Page 95 - Microsoft Word - Modul 1 Keselamatan dan Proteksi Radiasi Konsep dan Regulasi
P. 95
Moreira, R. G., & Castell-Perez, M. E. (2020). Fundamentals of Food Irradiation. In
Innovative Food Processing Technologies: A Comprehensive Review (pp. 1–
18). Elsevier. https://doi.org/10.1016/b978-0-12-815781-7.00008-1
Muir, B. R. (2020). A modified formalism for electron beam reference dosimetry to
improve the accuracy of linac output calibration. Medical Physics, 5(47), 2267–
2276. https://doi.org/10.1002/mp.14048
Muir, B. R., Cojocaru, C. D., McEwen, M. R., & Ross, C. K. (2017). Electron beam
water calorimetry measurements to obtain beam quality conversion factors.
Medical Physics, 44(10), 5433–5444. https://doi.org/10.1002/mp.12463
Muñoz Arango, E., Pickler, A., Mantuano, A., Salata, C., & de Almeida, C. E. (2020).
Feasibility study of the Fricke chemical dosimeter as an independent dosimetric
system for the small animal radiation research platform (SARRP). Physica
Medica, 71(March), 168–175. https://doi.org/10.1016/j.ejmp.2020.03.006
Oproiu, C., Toader, D., Nemtanu, M. R., & Popa, R. (2009). The use of the cellulose
triacetate to determine the dose distribution of an electron beam. Romanian
Reports of Physics, 54(9–10), 861–867.
Podgorsak, E. B. (2004). Radiation Oncology Physics: A Handbook for Teachers
and Students. In E. B. Podgorsak (Ed.), IAEA (1st ed., Vol. 5, Issue 3).
International Atomic Energy Agency.
https://doi.org/10.1120/jacmp.2021.25315
Renaud, J., Rossomme, S., Sarfehnia, A., Vynckier, S., Palmans, H., Kacperek, A.,
& Seuntjens, J. (2016). Development and application of a water calorimeter for
the absolute dosimetry of short-range particle beams. Physics in Medicine and
Biology, 61(18), 6602–6619. https://doi.org/10.1088/0031-9155/61/18/6602
Sephton, J. P., Sharpe, P. H. G., Chu, R. D. H., O’Hara, K. P. J., Abdel-Rehim, F.,
& Abdel Fattah, A. (2007). Dose mapping of a 60Co industrial irradiation plant
using an electronic data recording system, static measurements and
mathematical modelling. Radiation Physics and Chemistry, 76(11–12), 1820–
1825. https://doi.org/10.1016/j.radphyschem.2007.02.110
Sharpe, P., & Miller, A. (2009). Guidelines for the Calibration of Routine Dosimetry
Systems for use in Radiation Processing. In NPL REPORT CIRM (Vol. 29).
Sleptchonok, O. F., Nagy, V., & Desrosiers, M. F. (2000). Advancements in
accuracy of the alanine dosimetry system. Part 1. The effects of environmental
humidity. Radiation Physics and Chemistry, 57(2), 115–133.
www.elsevier.com/locate/radphyschem
Smith, B. R., Khan, A., & Culberson, W. S. (2021). Commissioning a compact,
tabletop EPR spectrometer for alanine dosimetry. Radiation Measurements,
146(January), 106629. https://doi.org/10.1016/j.radmeas.2021.106629
Sohrabpour, M., Sharpe, P. H. G., & Barret, J. H. (1988). Dose and Temperature
Response of OPTI-CHROMIC Dosimeter. Radiat Phys Chem, 31(4–6), 435–
440.
Steele, J. H. (2001). Food irradiation: A public health challenge for the 21st century.
Clinical Infectious Diseases, 33(3), 376–377. https://doi.org/10.1086/321899
Wang, Z., Xing, S., Wang, K., Jin, S., Zhang, J., & Fan, F. (2020). Direct
measurement of ionization chamber absorbed dose kQ factors in clinical
electron beams. Radiation Measurements, 139(October), 106481.
https://doi.org/10.1016/j.radmeas.2020.106481
Yamada, H., & Parker, A. (2022). Gafchromic TM MD-V3 and HD-V2 film response
depends little on temperature at time of exposure. 196(March), 1–7.
Pelatihan Petugas Iradiator 84