

DASAR FISIKA RADIASI

Nofriady Aziz, S.ST, M.Eng

Pelatihan Petugas Keahlian Pada Fasilitas Produksi Radioisotop dan Radiofarmaka dari Siklotron untuk Area Produksi dan Area Sarana Penunjang Kritis bagi Pegawai PT Global Onkolab Farma 30 Juni – 11 Juli 2025

Direktorat Pengembangan Kompetensi BRIN - 2025

BIODATA

Nama : Nofriady Aziz, S.ST, M.Eng

KKPR IBBN DPFK

Pendidikan:

D4 Teknokimia Nuklir STTN - BATAN S2 Teknik Kimia UGM

Organisasi:

- 1. Sertifikasi Ahli K3 Umum 2019
- 2. Sekretaris SATGAS K3 2019
- 3. KETUA SATGAS K3 2020 2022
- 4. PPR 2020 sekarang

Pengalaman:

- ı. BPTC Korea 2022
- 2. ICTP IAEA INES Italy 2022
- 3. IAEA INRLS France 2023
- 4. IAEA SEA Austria 2023
- 5. IAEA SEDO Austria 2023

Aplikasi radiasi banyak digunakan di berbagai bidang : Industri, Kesehatan, Pertanian, Hidrologi, Pertambangan

Aplikasi radiasi berdasar pada interaksi radiasi dengan materi

Perlu pemahaman mengenai asal usul radiasi dan interaksinya dengan materi

Mempunyai
pengetahuan yang
memadai mengenai
radiasi dan interaksinya
dengan materi

Mempercepat pemahaman mata pelajaran lainnya.

MARFAAT

TUJUAN PEMBELAJARAN

Indikator Keberhasilan

- menyebutkan jenis peluruhan radioaktif dan sifat radiasi
- menghitung aktivitas radionuklida berdasarkan konsep waktu paro;
- menguraikan proses interaksi radiasi (a, b, g dan neutron) dengan materi;
- menjelaskan perbedaan sumber radiasi alam dan buatan

Kompetensi Dasar

Setelah mengikuti mata pelajaran ini peserta mampu:

Menjelaskan
pengetahuan dasar
radiasi dengan benar.

POKOK BAHASAN

BAB I. PENDAHULUAN

BAB II. STRUKTUR ATOM DAN INTI ATOM

BAB III. PELURUHAN RADIOAKTIF

BAB IV. INTERAKSI RADIASI DENGAN MATERI

BAB IV. SUMBER RADIASI

Durasi: 2 x 45 menit penyajian dan tanya jawab

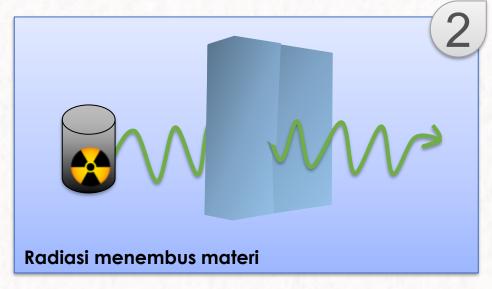
PENDAHULUAN

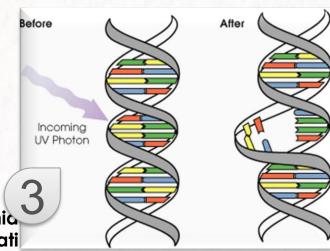
PENDAHULUAN

Persepsi Masyarakat

Radiasi?

Pancaran energi melalui materi atau ruang dalam bentuk panas, partikel atau gelombang elektromagnetik (cahaya, foton) dari suatu sumber radiasi

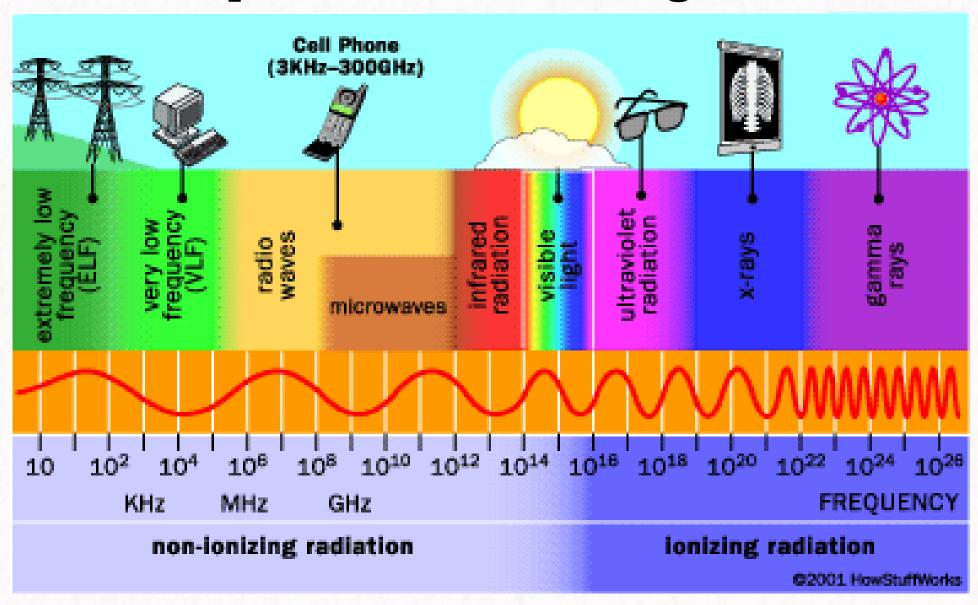


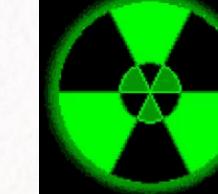

- Tak dapat dideteksi oleh indera manusia
- Dapat berinteraksi dengan bahan/materi

SIFAT RADIASI

Radiasi tidak dapat dideteksi indra manusia

Radiasi dapat merubah sifat fisika dan kimia materi yang dilewati


Jenis Radiasi



- Pengion (radiasi yang bisa menimbulkan proses ionisasi)
 - ✓ Alpha, Beta, Gamma, Sinar-X, Neutron.
- Non Pengion (radiasi yang tidak bisa menimbulkan proses ionisasi)
 - ✓ Radiasi TV, Microwave, Arus listrik Teg. Tinggi, Komputer, dll)

Spektrum Elektromagnetik

Radiasi Pengion

Kemampuan mengionisasi media yang dilaluinya disebabkan radiasi tersebut mempunyai energi yang besar

Apakah Berbahaya????

Radiasi bukan Pengion

Radiasi Pengion

Kenapa Bisa terjadi???

alpha (α), beta (β) atau gamma (γ)

Nuklida tidak stabil (radionuklida)

Nuklida Stabil

RADIASI, ANY QUESTIONS?

2 STRUKTUR ATOM

STRUKTUR ATOM ... Definisi

MATERI

Benda yang tersusun dari molekul yang terdiri atas beberapa atom

ATOM

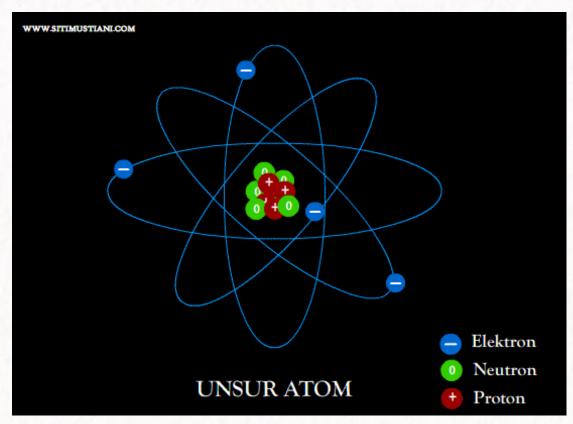
bagian terkecil dari suatu materi yang masih memiliki sifat dasar materi tersebut

mempunyai ukuran ± 10⁻¹⁰m (1 Angstrom)

Partikel Dasar Sub Atom

Elektron

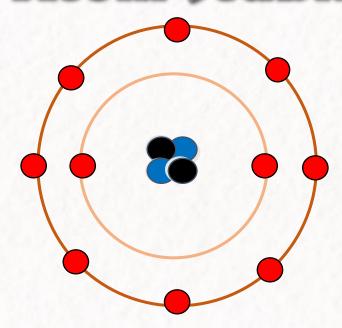
 masa sangat ringan, bermuatan listrik negatip


Proton

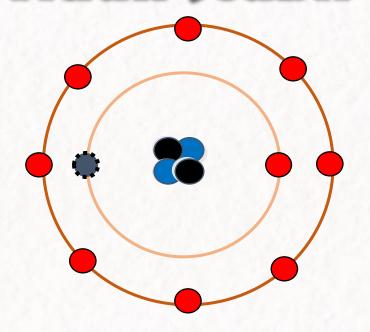
 masa lebih berat dari elektron, bermuatan listrik positip

Netron

 masa sedikit lebih berat dari proton, tidak bermuatan listrik



Inti Atom dan Elektron


Partikel	Muatan Listrik		Massa	
	Coulomb	Elementer	Kg	sma
Elekron	-1,6 x 10 ⁻¹⁹	-1	9,1 x 10 ⁻³¹	0
Proton	+1,6 x 10 ⁻¹⁹	+1	1,67 x 10 ⁻²⁷	1
Neutron	0	0	1,67 x 10 ⁻²⁷	1

STRUKTUR ATOM ... Atom Stabil dan Tidak Stabil

Atom Stabil

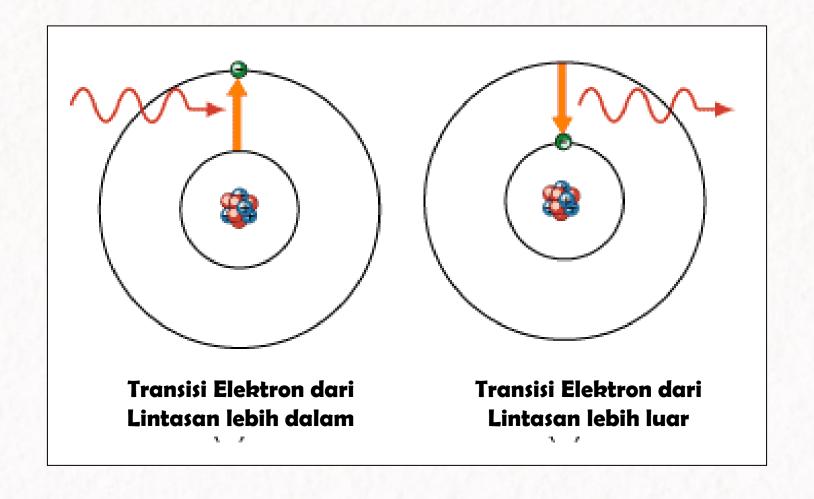
Setiap lintasan yang lebih dalam terisi penuh dengan elektron sesuai dengan kapasitasnya

Atom Tidak Stabil

Ada lintasan yang lebih dalam yang tidak terisi penuh dengan elektron sesuai dengan kapasitasnya

STRUKTUR ATOM ... Transisi Elektron

Pengertian


Perpindahan elektron dari satu lintasan ke lintasan yang lain

Kondisi

transisi berasal dari lintasan yang lebih luar ke lintasan dalam, akan dipancarkan energi

transisi dari lintasan dalam ke lintasan yang lebih luar dibutuhkan energi.

STRUKTUR ATOM ... Transisi Elektron

STRUKTUR ATOM ... Transisi Elektron Energi Eksternal 0 Sinar-X **C**karakteriştik 0 0

STRUKTUR ATOM ... Identifikasi Inti Atom

- Nuklida = Jenis Inti Atom
- Jumlah Nuklida > Jumlah unsur

zXA atau XA atau X-A

A: Nomor massa = Jumlah proton + neutron

Z: Nomor atom = Jumlah proton

N: Nomor massa - Nomor atom = A - Z

STRUKTUR ATOM ... Penulisan Nuklida

₂He⁴ He⁴ He-4

- Jenis Unsur : Helium
- Jumlah proton (Z) = 2
- Jumlah neutron (N) = 2

₂₇Co⁵⁹

- Jenis Unsur : Cobalt
- Jumlah proton (Z) = 27
- Jumlah neutron (N) = 32

STRUKTUR ATOM ... Penamaan Nuklida

Isotop

- zX^A atau X^A atau X-A
- Contoh: 27Co59, 27Co60
- ₁H¹, ₁H², ₁H3

Isobar

- zXA atau XA atau X-A
- Contoh 6C14 dan 7N14

STRUKTUR ATOM ... Penamaan Nuklida

Isoton

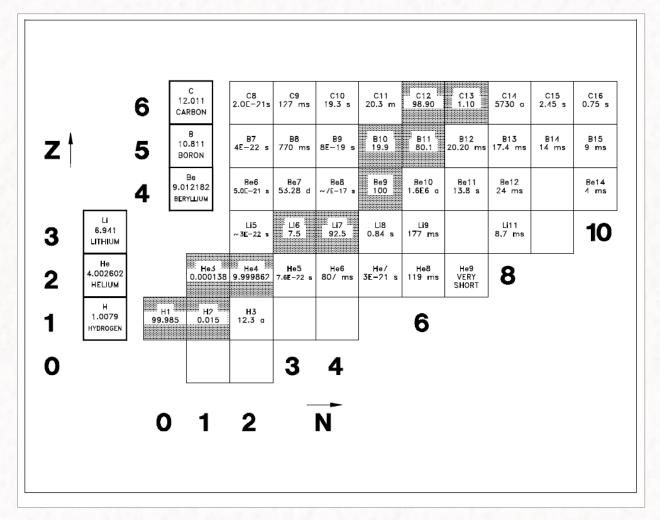
- zXA atau XA atau X-A
- Contoh: 12 Mg²⁶, 13 Al²⁷, 14 Si²⁸

Isomer

- zXAm, zXA*
- Contoh: 28 Ni⁶⁰dan 28 Ni^{60*}

Kestabilan Inti Atom

 ditentukan oleh komposisi jumlah proton dan jumlah neutron


Secara umum:

- Inti ringan \rightarrow N = Z
- Inti berat \rightarrow N = $1\frac{1}{2}$. Z

Secara tepat : Lihat tabel nuklida

Kurva Kestabilan Inti

Kurva Kestabilan Inti

Rangkuman

Transisi elektron:

- Perpindahan Elektron dari satu lintasan ke lintasan lainnnya
- dari lintasan yang lebih luar ke lintasan yang lebih dalam
 — memancarkan radiasi sinar-X karakteristik.

STRUKTUR ATOM ... Rangkuman

Isotop

• nomor Atom (Z) sama, tetapi Nomor Massa (A) berbeda

Isobar

 jumlah jumlah proton + netron (A) – NO MASSA - sama tetapi jumlah proton – NO ATOM- berbeda

Isoton

 jumlah netron (A) sama, tetapi jumlah proton (Z) – NO ATOM- berbeda

Isomer

 Nomor massa (Z) maupun nomor atom (A) sama tetapi mempunyai tingkat energi berbeda

3

PELURUHAN RADIOAKTIF

PELURUHAN RADIOAKTIF Definisi

Peluruhan radioaktif

 proses perubahan inti atom yang tidak stabil menjadi stabil.

radioisotop atau radionuklida

Inti atom yang meluruh

39

PELURUHAN RADIOAKTIF Jenis Peluruhan

radiasi alpha (α) , beta (β) atau gamma (y) nuklida tidak Nuklida stabil Stabil (radionuklida)

PELURUHAN RADIOAKTIF Peluruhan Alpha

Terjadi pada inti – inti yang tidak stabil yang relatif berat (nomor atom >80)

Memancarkan partikel alpha (a) yang identik dengan inti helium --> dua proton dan dua neutron

$$\alpha \approx {}_{2}\text{He}^{4}$$
 $_{Z}X^{A} \rightarrow {}_{Z^{-2}}Y^{A^{-4}} + alpha$
Contoh: $_{92}\text{U}^{238} \rightarrow {}_{90}\text{Th}^{234} + \alpha$

PELURUHAN RADIOAKTIF Peluruhan Beta

terjadi perubahan neutron menjadi proton di dalam inti atom atau proton menjadi neutron.

terjadi pada inti tidak stabil yang relatif ringan.

dipancarkan partikel beta yang mungkin bermuatan negatif (β ⁻) atau positif (β ⁺).

$$_{z}X^{A} \rightarrow _{z+1}Y^{A} + \beta^{-} + \nu$$

$$_{z}X^{A} \rightarrow _{z-1}Y^{A} + \beta^{+} + \nu$$

PELURUHAN RADIOAKTIF Peluruhan Beta

- Partikel β⁻ identik dengan elektron
- partikel β ⁺ identik dengan elektron yang bermuatan positif (positron).

Contoh:

$$_{6}$$
C¹⁴ $\rightarrow _{7}$ N¹⁴ + β ⁻ + ν

$$_{11}Na^{22} \rightarrow _{10}Ne^{23} + \beta^{-} + \nu$$

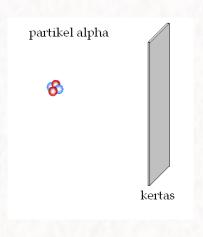
PELURUHAN RADIOAKTIF

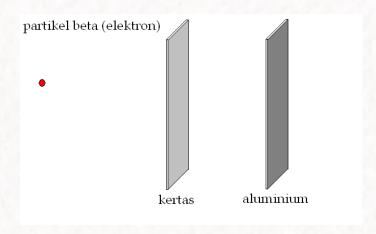
Peluruhan Gamma

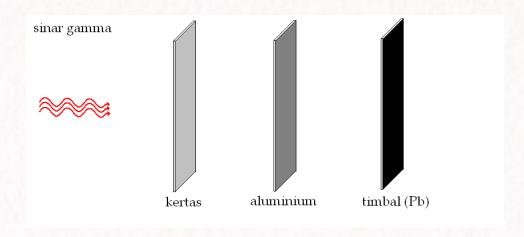
terjadi bila energi inti atom tidak berada pada keadaan dasar (ground state)

nomor atom maupun nomor massa tidak berubah

memancarkan gelombang elektromagnetik (foton)


mengikuti peluruhan α ataupun β .


$$zX^{A*} \rightarrow zX^{A} + \gamma$$


• Contoh:
$$_{27}\text{Co}^{60} --> _{28} \text{Ni}^{60}^* + \beta^-$$

$$_{28}$$
 Ni^{60*} --> $_{28}$ Ni⁶⁰ + γ

DAYA TEMBUS RADIASI

PELURUHAN RADIOAKTIF Aktivitas Sumber Radioaktif

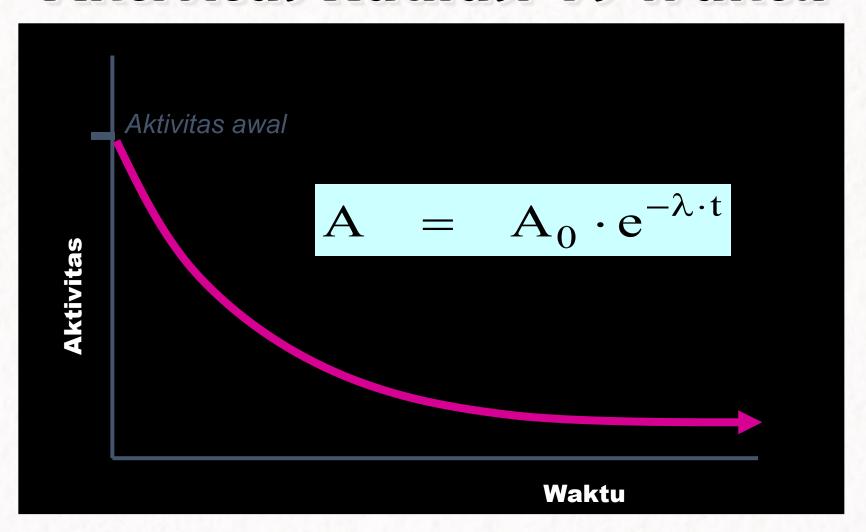
Pengertian

Jumlah peluruhan yang terjadi dalam 1 detik

menunjukkan jumlah radionuklida yang tidak stabil berubah menjadi nuklida stabil dalam satu detik

PELURUHAN RADIOAKTIF Perhitungan Aktivitas

$$A = A_0 \cdot e^{-\lambda \cdot t}$$


A = aktivitas pada saat t,

A_o = aktivitas mula-mula

 λ = konstanta peluruhan

t = selang waktu antara saat mula-mula sampai saat ini

PELURUHAN RADIOAKTIF Aktivitas Radiasi Vs Waktu

PELURUHAN RADIOAKTIF Satuan Aktivitas Radiasi

- Currie (Ci) satuan lama
- Becquerrel (Bq) satuan baru (SI)

1 Bq = 1 peluruhan per detik

1 Ci = $3,7 \cdot 10^{10}$ Bq atau

1 μ Ci = 3,7 10⁴ Bq = 37.000 Bq

 $1 \text{ mCi} = 10^{-3} \text{ Ci}$

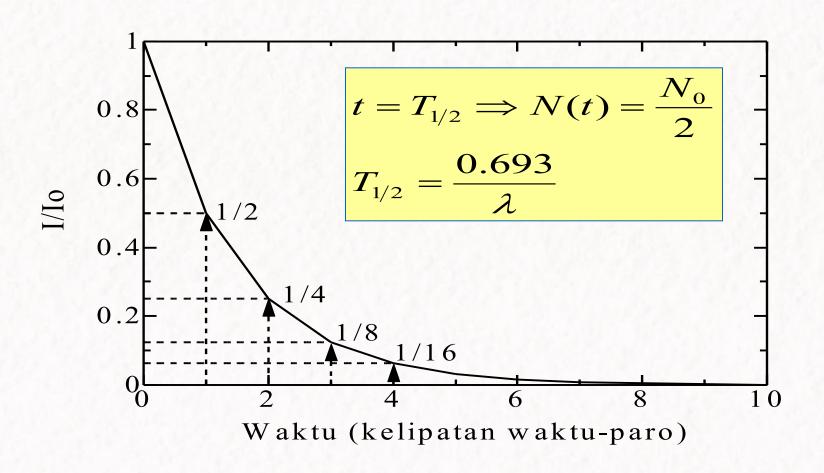
1 μ Ci = 10⁻⁶ Ci

PELURUHAN RADIOAKTIF Umur Paro

Pengertian

selang waktu yang dibutuhkan agar aktivitas suatu radioaktif menjadi separuhnya

Setiap radionuklida mempunyai umur paro yang unik dan tetap


$$\mathsf{T}_{1/2} \quad = \quad \frac{0,693}{\lambda}$$

PELURUHAN RADIOAKTIF Umur Paro

Isotop	Waktu paro (T _{1/2})
Ytterbium 169 (Yb-169)	32 hari
lridium 192 (lr-192)	74,3 hari
Selenium 75 (Se-75)	120 hari
Thulium 170 (Tm-170)	130 hari
Cobalt 60 (Co-60),	5,27 tahun
Cesium 137 (Cs-137)	30,1 tahun
Radium 226 (Ra-226)	1620 tahun

PELURUHAN RADIOAKTIF

Kurva Peluruhan Radioaktif

PELURUHAN RADIOAKTIF

Penggunaan Waktu Paro

Selang Waktu	Aktivitas
0	Ao
1 x T½	0,5 x Ao
2 x T½	0,25 x Ao
3 x T½	0,125 x Ao
4 x T½	0,0625 x Ao
5 x T½	0,03125 x Ao
6 x T½	0,0156 x Ao
dst	

$$\frac{\mathsf{A}_2}{\mathsf{A}_1} = \left(\frac{1}{2}\right)^{\frac{\mathsf{T}}{\mathsf{T}_{1/2}}}$$

$$A = \left(\frac{1}{2}\right)^n \cdot A_0$$

$$n = \frac{selang\ waktu}{T^{1/2}}$$

PELURUHAN RADIOAKTIF Contoh Soal

1. Sumber Ir-192 mempunyai aktivitas 100 MBq pada tanggal 1 Januari 2025. Berapa aktivitasnya pada tanggal 28 Mei 2025 jika Ir-192 mempunyai umur paro (T_{1/2}) = 74 hari?

Jawab:

n = 148/74 = 2A = $(1/2)^2$. 100 MBq = 25 MBq

Jadi aktivitas Ir-192 pada tanggal 28 Mei 1999 adalah 25 MBq

PELURUHAN RADIOAKTIF

Contoh Soal

2. Suatu bahan radioaktif mempunyai aktivitas 100 MBq pada pukul 08.00 WIB. Sedangkan pada pukul 14.00 WIB aktivitasnya tinggal 25 MBq. Berapa umur paro (T_{1/2}) bahan radioaktif tersebut?

Jawab:

Ao = 100 MBq, A(t) = 25 MBq, dan waktu t = 6 jam. Setelah 6 jam aktivitasnya tinggal 25 / 100 = 1/4 kali yang berarti telah mancapai 2 kali $T_{1/2}$.

 \rightarrow 2 x T_{1/2} = 6 Jam, maka T_{1/2} = 3 jam.

PELURUHAN RADIOAKTIF Rangkuman

1. Peluruhan radioaktif

- perubahan inti atom yang tidak stabil menjadi inti atom yang stabil.
- 2. Peluruhan spontan
 - ullet peluruhan lpha, memancarkan 2 netron dan 2 proton
 - ullet Peluruhan eta, memancarkan elektron atau positron
 - ullet Peluruhan γ , memancarkan gelombang elektromagnetik

3. Umur Paro

 selang waktu yang dibutuhkan agar aktivitas suatu radioaktif menjadi separuhnya

INTERAKSI RADIASI DENGAN MATERI

INTERAKSI RADIASI... INTERAKSI PARTIKEL ALPHA

Karakteristik a

secara fisik maupun elektrik relatif besar

Pada lintasannya mudah mempengaruhi elektron dari atom

mudah diserap, sehingga daya tembusnya terbatas

daya tembus 3,5 Mev alpha 20 mm di udara, 0.03 mm jaringan tubuh

INTERAKSI RADIASI... INTERAKSI PARTIKEL ALPHA

Ionisasi

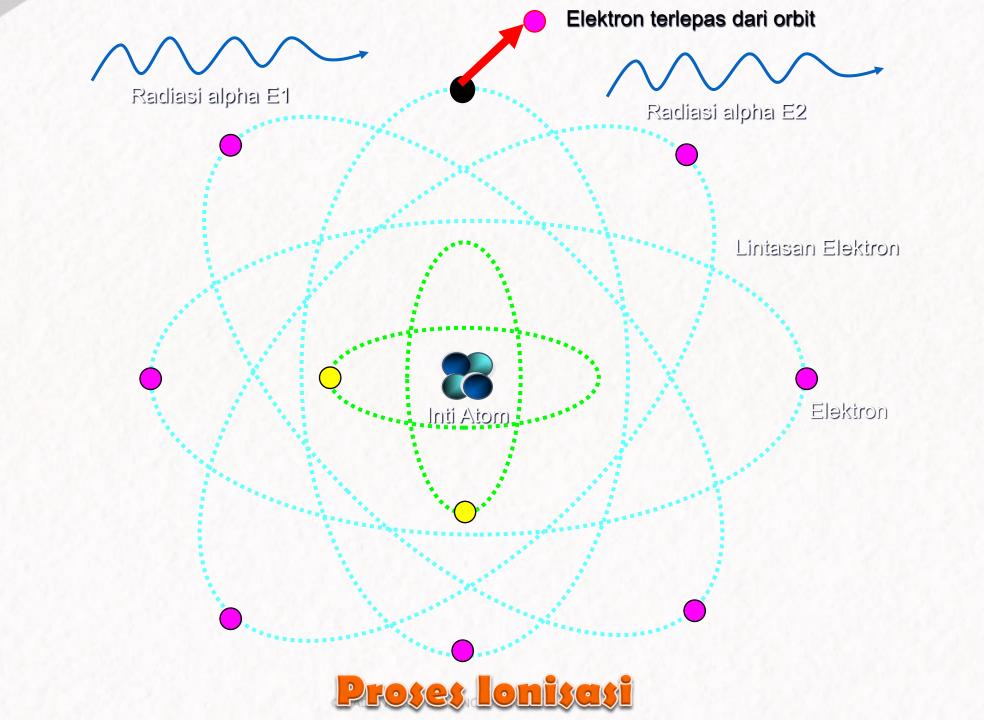
• terlepasnya elektron dari orbitnya yang menjadi elektron bebas dan dihasilkan atom bermuatan positif

Eksitasi

 berpindahnya elektron ke kulit yang lebih luar karena adanya energi eksternal

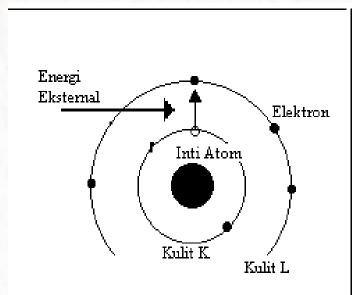
Reaksi inti

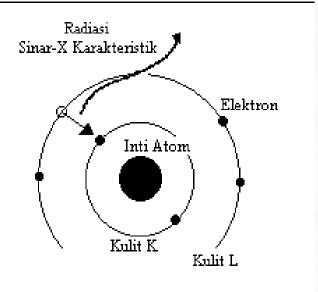
ullet Interaksi antara radiasi α dengan inti menghasilkan inti atom baru

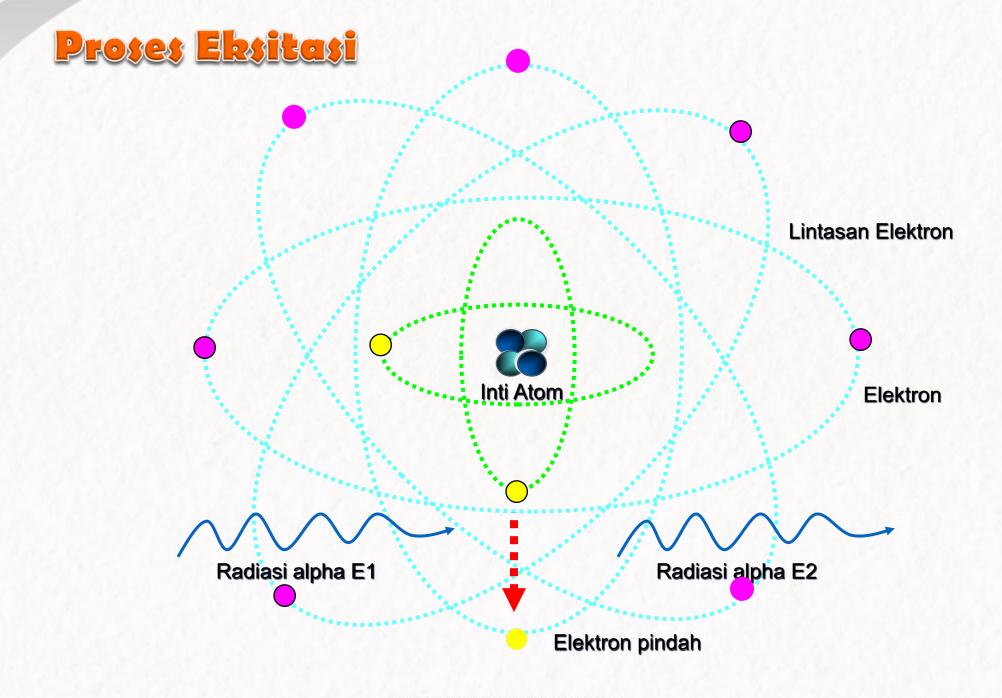

INTERAKSI RADIASI... Ionisasi

Pengertian

Terlepasnya elektron dari orbitnya sehingga menjadi lon


Menjadi atom yang tidak netral


Terjadi bila energi yang datang lebih besar dari energi ikat elektron



INTERAKSI RADIASI... Eksitasi

 mirip dengan proses ionisasi, tetapi elektron tidak sampai lepas dari atomnya hanya berpindah ke lintasan yang lebih luar.

INTERAKSI RADIASI... Interaksi Partikel Beta

Karakteristik \(\beta \)

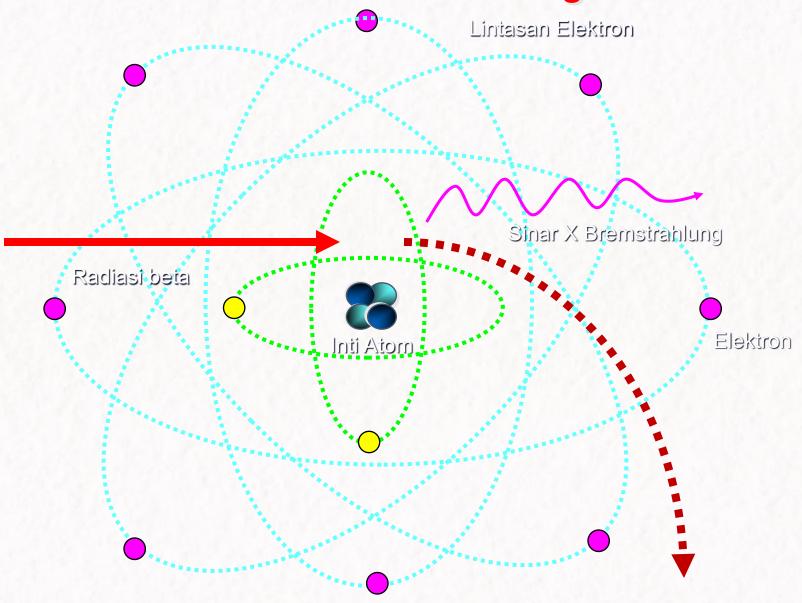
Masa dan muatan beta lebih kecil dari α

Kurang diserap oleh materi

Daya tembus lebih jauh dari α

daya tembus 3,5 Mev lpha 11 m di udara, 15 mm di jaringan tubuh

INTERAKSI RADIASI... Interaksi Partikel Beta


Ionisasi

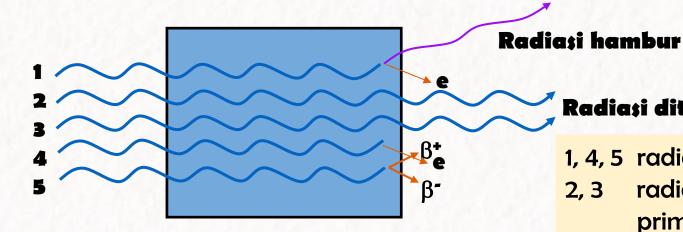
Eksitasi

Proses Bremstrahlung,

• pemancaran radiasi gelombang elektromagnetik (sinar-X kontinyu) ketika radiasi β , dibelokkan atau diperlambat oleh inti atom yang bermuatan positif

Proses Bremstrahlung

INTERAKSI RADIASI... Proses Bremsstrahlung

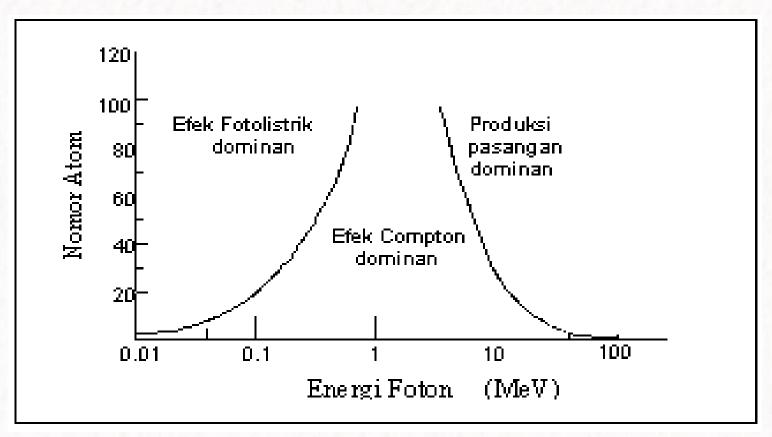

 Fraksi energi (f) dari sinar-X bremsstrahlung yang dihasilkan

$$f = 3.5 \times 10^{-4} \cdot Z \cdot E_{maks}$$

- Energi partikel β yang lebih besar akan menghasilkan radiasi bremsstrahlung yang lebih besar.
- Semakin besar nomor atom bahan penyerap (semakin berat) akan menghasilkan radiasi sinar-X yang lebih besar

INTERAKSI RADIASI...

Interaksi Radiasi Gamma/ Sinar-x Dengan Materi


Interaksi yang terjadi

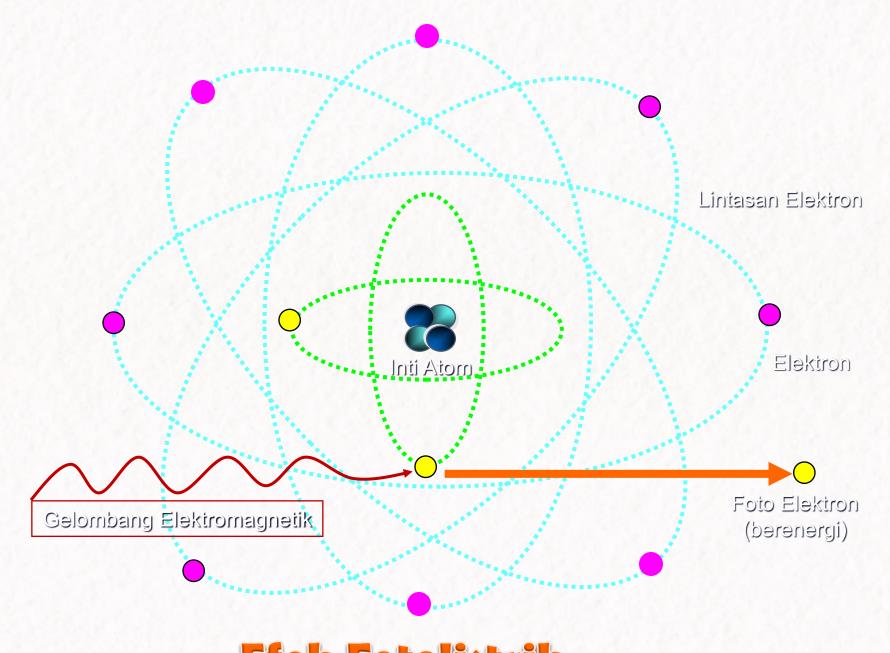
- Efek fotolistrik
- **Hamburan Compton**
- Efek produksi pasangan

Radiasi diteruskan

- 1, 4, 5 radiasi diserap
- radiasi transmisi, radiasi primer yang tidak mengalami perubahan energi

INTERAKSI RADIASI...

Pengaruh Nomor atom material dan Energi Radiasi pada interaksi Radiasi Gamma/ Sinar-x Dengan Materi


INTERAKSI RADIASI... Efek Fotolistrik

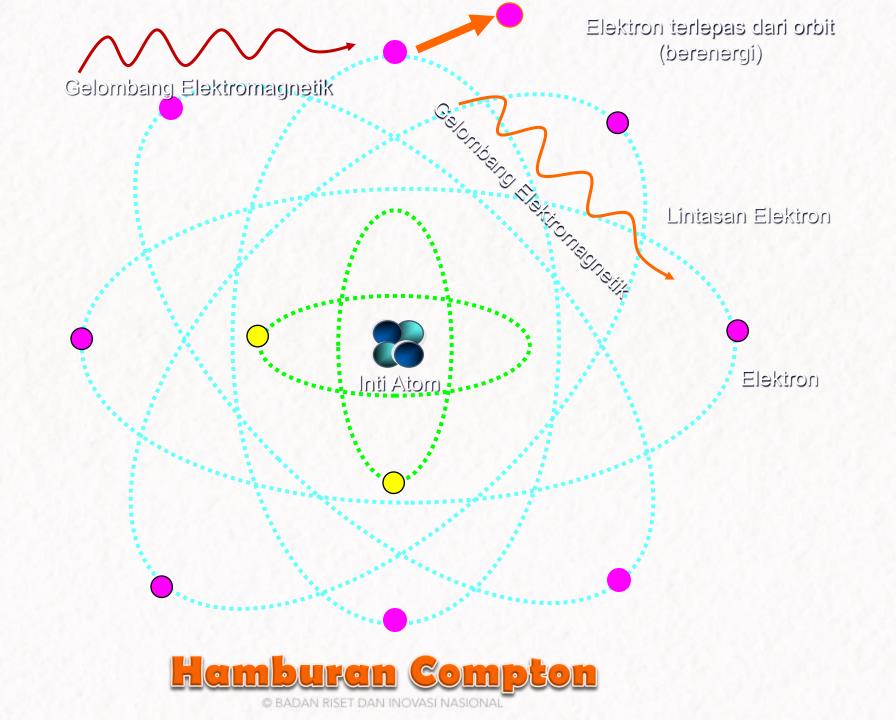
terjadi energi foton rendah (< 100 keV)

energi foton diserap seluruhnya oleh elektron orbit

elektron orbit terlepas dari atom > fotoelektron,

mempunyai energi sebesar energi foton yang mengenainya.

Efek Fotolistrik


INTERAKSI RADIASI... Hamburan Compton

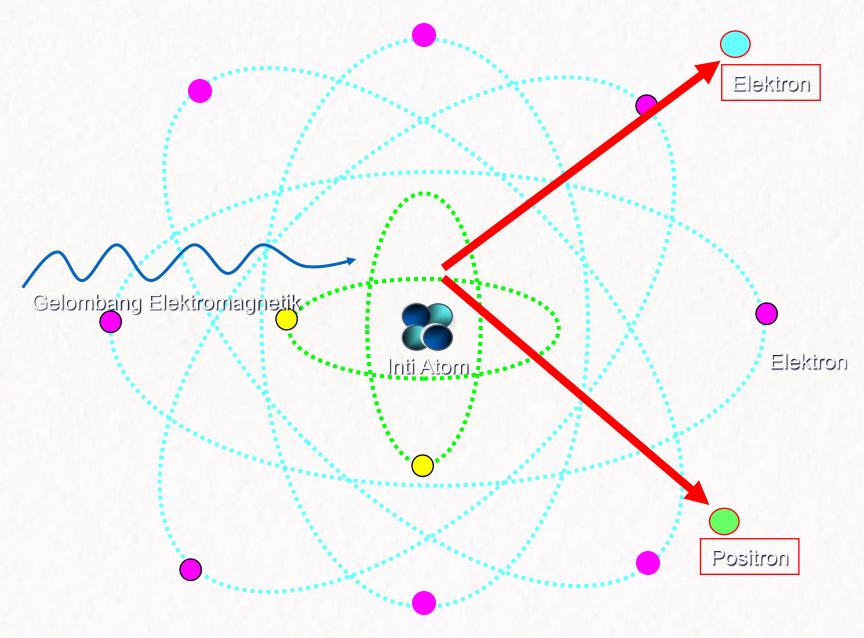
Terjadi pada energi foton sedang (100 keV < E< 1 MeV.)

Energi foton mampu melepaskan elektron di kulit lebih luar

Sebagian energinya diberikan ke elektron

Elektron terlepas dari orbit, foton gamma dengan energi sisanya terhambur

INTERAKSI RADIASI... Produksi Pasangan


hanya terjadi bila energi foton lebih besar dari 1,02 MeV.

Ketika foton "sampai" ke dekat inti atom maka foton tersebut akan lenyap dan berubah menjadi sepasang elektron-positron.

Positron adalah partikel yang identik dengan elektron tetapi bermuatan positif

$$E_{e+} + E_{e-} = hn_i - 1.02 \text{ MeV}$$

- E_{e+} = energi kinetik positron
- E_e = energi kinetik elektron.

Produkti Patangan BADAN RISET DAN INOVASI NASIONAL

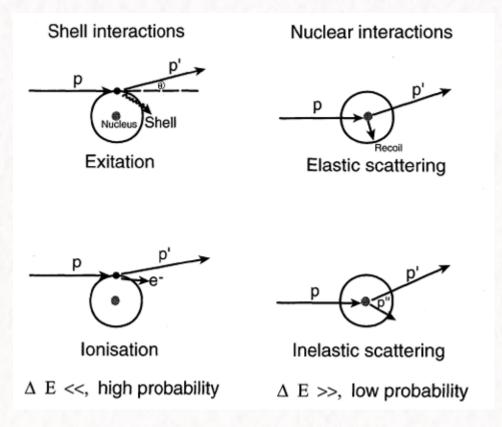
Interakți Radiați Proton

Interaksi Radiasi Proton

Ionisasi

Eksitasi

Tumbukan Elastik


Tumbukan tidak Elastikisi

Proses Interaksi Proton dengan Materi

- Interaksi dengan Inti Atom
- Elastik: ΔE kecil, sudut kecil
- Inelastik: ΔE besar, partikel sekunder
- Probabilitas rendah → meningkat pada E tinggi

Interaksi denganElektron

- Ionisasi
- Eksitasi
- ΔE kecil, sangat sering
- Probabilitas tinggi (↑↑↑)

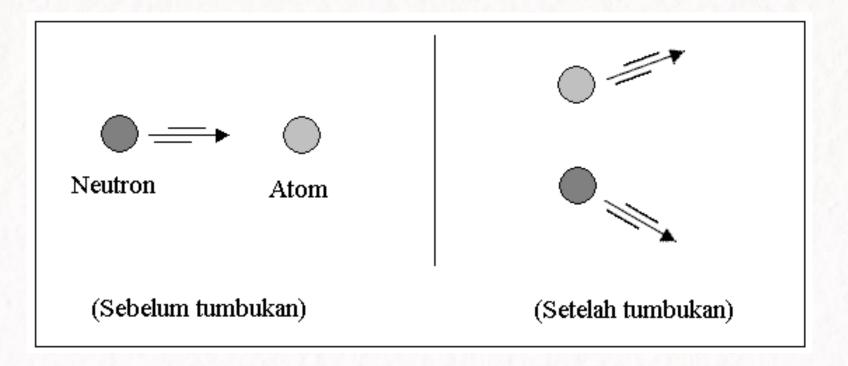
👉 Interaksi dominan pada energi rendah—sedang: elektron (ionisasi/eksitasi).

🕝 Interaksi nuklir signifikan pada energi tinggi (>100 MeV).

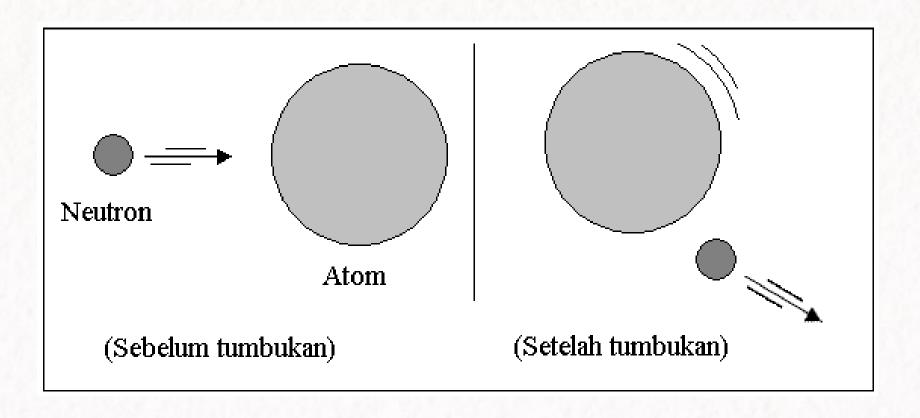
Interakți Radiați Neutron

Interaksi Radiasi Neutron

Tumbukan Elastik

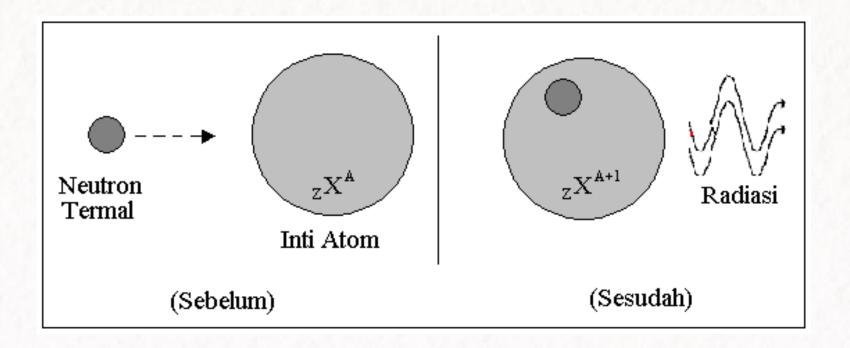

Tumbukan tidak Elastik

Reaksi Inti

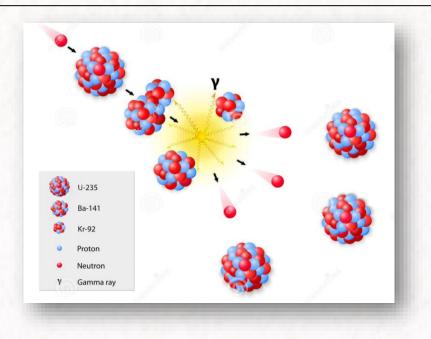

Reaksi Fisi

Interakți Radiați Neutron

Tumbukan Elastis



Interakți Radiați Neutron Tumbukan Tak Elastis


Interakți Radiați Neutron

Reaksi Inti

INTERAKSI RADIASI... INTERAKSI RADIASI NEUTRON Reaksi Fisi

$$U^{235} + n_t \rightarrow Y_1 + Y_2 + (2-3)n + Q$$

INTERAKSI RADIASI... Rangkuman

Interaksi α

ionisasi

eksitasi

Reaksi inti

Interaksi β

ionisasi

eksitasi

Bremstrahlung

Interaksi γ dan sinar-

efek fotolistrik,

efek Compton,

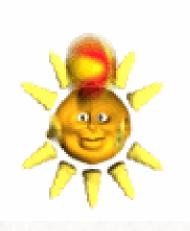
produksi pasangan.

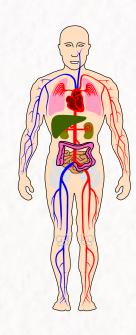
Interaksi neutron

proses tumbukan elastik,

tak elastik

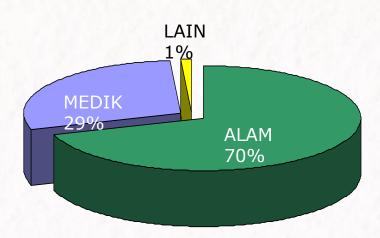
reaksi inti (penangkap an neutron).


5 SUMBER RADIASI


SUMBER RADIASI

1. SUMBER RADIASI ALAM

- Sinar Kosmik (Benda Langit)
- Batuan (U²³⁸, C¹⁴ dan K⁴⁰)
- Dalam Tubuh (C¹⁴ dan K⁴⁰)



2. SUMBER RADIASI BUATAN

- Zat Radioaktif Buatan
 (Co⁶⁰, Cs¹³⁷, I¹³¹, Ir¹⁹², Cr⁵¹, P³², dll)
- Mesin Sumber Radiasi
 (Mesin Sinar-X, Akselerator, Reaktor Nuklir, Iradiator)

SUMBER RADIASI Sumber Radiasi Buatan

Cyclotron terbesar di dunia (CERN di Swiss) (Panjang 26 km)

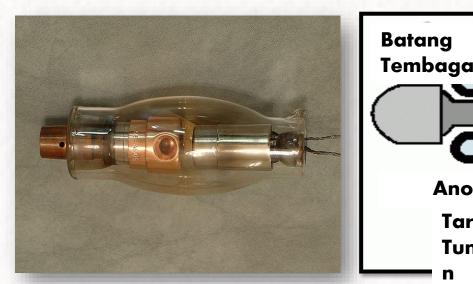
linear accelerator

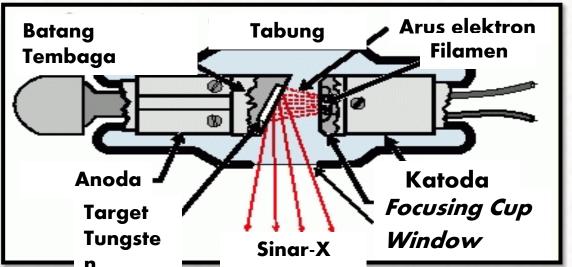
cyclotron

SUMBER RADIASI

Sumber Radiasi Buatan

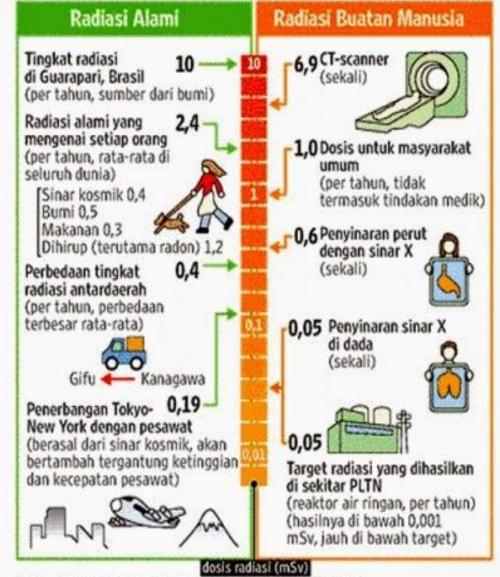
Pembangkit Sinar-X





SUMBER RADIASI Sumber Radiasi Buatan

Pembangkit Sinar-X


Tabung Sinar-X

BRIN BADAN RISET DAN INOVASI NASIONAL

RADIASI DI SEKITAR KITA

Sumber-sumber Radiasi di Sekitar Kita

Sumber: http://www.global-peace.go.jp/en/cfile/cfileimage/ca-26-2-0.jpg

SUMBER RADIASI Rangkuman

Sumber radiasi:

sumber radiasi alam dan sumber radiasi buatan.

Sumber radiasi alam: radiasi kosmik, terestrial dan internal.

Sumber radiasi buatan:

radionuklida, pesawat sinar-X dan akselerator.

PELURUHAN RADIOAKTIF Sifat Peluruhan Alpha

a. Daya ionisasi lebih besar dari daya ionisasi partikel Beta maupun sinar gamma.

b. Jarak jangkauan (tembus) nya sangat pendek,

c. Dibelokkan jika melewati medan magnet/ medan listrik.

d. Kecepatan bervariasi antara 1/100 hingga 1/10 kecepatan cahaya.

PELURUHAN RADIOAKTIF Sifat Radiasi Beta

- a. Daya ionisasinya di udara 1/100 kali dari partikel alpha.
- b. Jarak jangkauannya lebih jauh daripada partikel alpha, bbrp cm di udara
- c. Kecepatan berkisar antara 1/100 hingga 99/100 kecepatan cahaya.
- d. Karena sangat ringan, maka mudah sekali dihamburkan jika melewati medium.
- e. dibelokkan jika melewati medan magnet atau listrik.
- f. Energi rata-ratanya 1/3 energi maksimum

PELURUHAN RADIOAKTIF Sifat Radiasi Gamma

- a. panjang gelombang antara 0,005 Å hingga 0,5 Å.
- b. Daya ionisasinya di dalam medium sangat kecil sehingga daya tembusnya sangat besar bila dibandingkan dengan daya tembus partikel α atau β .
- c. Karena tidak bermuatan, sinar γ tidak dibelokkan oleh medan listrik maupun medan magnet
- d. Spektrum energinya diskrit

- 1. Yang BUKAN termasuk radiasi pengion adalah:
 - a. Alfa
 - b. Beta
 - c. UV
 - d. Neutron

- 2. Zat radioaktif ₂₆Fe⁵⁷ dan ₂₇Co⁵⁷ dinamakan:
- a. Isotop
- b. Isoton
- c. Isobar
- d. isodose

- 3. Yang dimaksud dengan waktu paro (half life) adalah: a.waktu yang diperlukan agar aktivitas zat radioaktif bertambah separo dari nilai aktivitas mula-mula
 - b. waktu yang diperlukan aktivitas zat radioaktif bertambah menjadi dua kalinya
 - c. waktu yang diperlukan aktivitas zat radioaktif berkurang menjadi separo dari nilai aktivitas mula-mula
 - d. waktu yang diperlukan untuk menurunkan aktivitas radiasi

- 4. Yang BUKAN interaksi radiasi gamma dengan materi adalah:
 - a. Fotolistrik
 - b. Reaksi Inti
 - c. Hamburan Compton
 - d. Produksi Pasangan

5. Salah satu contoh sumber radiasi alam adalah:

- a. Cs-137
- b. lr-192
- c. U-238
- d. Co-60

Brin Indonesia

www.brin.go.id

Terima Kasih

© @ @brin_indonesia

@brin.indonesia