

Nuclear Reactor Safety: Probabilistic Safety Assessment

D. T. Sony Tjahyani

Research Center for Nuclear Reactor Technology National Research and Innovation Agency (BRIN)

> FTC on Reactor Engineering and Safety I 17 – 21 February 2025

Content

Introduction

PIE= Postulated Initiating Event (kejadian awal terpostulasi) CDF= Core Damage Frequency (Frekuensi kerusakan teras) Assessment ≈ Analysis

Deterministic	Probabilistic
Analyze only pre selected sequences to prove core damage will not occur	Analyze all sequence that can happen in real situations (Focus on sequences such as core damage sequence that can cause damage to the public and property)
Assume single failure only, assume system either operating or failed/no recovery	Consider multiple failures, assume systems can fail (or operate successfully) with some probabilities, credit for recovery, allow core damage
Does not investigate causes and impact of systems and components failures	Investigate causes and impacts of systems and components failures
Provides little information for risks, major contribution to the risks, and weakness of a plant	Provide more realistic assessment of the risks, evaluate likelihood as well as consequences, major contributors to the risks, and weakness of a plant

Risk Concept

- Probability likelihood of an event occurring
- Frequency number of occurrences of an event per unit of time
- Consequence ultimate result of event in terms of public health impact, economic impact, etc.

intermediate consequence measures are often used (e.g., core damage frequency, large early release frequency)

Risk Concept

• Risk – the frequency with which a given consequence occurs

- PSA an analytical tool that answers three questions:
 - What can go wrong? (accident scenario/sequence)
 - How likely is it to occur? (frequency)
 - What are the effects? (consequences)
- PSA/PRA (Probabilistic Safety/Risk Analysis):

- PSA is a methodology of risk assessment to provide a comprehensive, structured approach to identifying failure scenarios and deriving numerical estimated of the risks to workers and member of the public
- PSA is a quantitative assessment of the risk from accidents in nuclear power plants
 - PSA = Probabilistic Safety Assessment (Japan, Korea, Canada etc)
 - PRA = Probabilistic Risk Analysis (USA)

SF-1

 To ensure the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation.

SSR-2/1 (Rev.1) (Requirement 42)

 A safety analysis of the design for the nuclear power plant shall be conducted in which methods of both deterministic analysis and probabilistic analysis.

SSR-2/1 (Rev.1) (Para 5.76)

- The design shall take due account of the probabilistic safety analysis of the plant for all modes of operation and for all plant states.
- No PIE has a major contribution to risk
- The levels of defence in depth are independent
- To assure that no small deviations cause cliff edge effects
- To compare the results of the analysis with the acceptance criteria for risk

PSA :

- To provide important safety insights in addition to those provided by deterministic analysis
- To identifying accident sequences that can follow from a broad range of initiating events
- a systematic and realistic determination of damage and radioactive releases and their frequencies

SF-1: Fundamental Safety Principles

SSR-2/1: Safety of Nuclear Power Plants: Design

Level 1 PSA

- The design and operation of the plant are analysed.
- To identify the sequences of events that can lead to core and/or fuel damage.
- To estimate core and/or fuel damage frequencies.

Level 2 PSA

- Progression of core and/or fuel damage sequences and phenomena of severe damage.
- identifies ways in which associated releases of
- radioactive material from fuel can result in releases to the environment.
- To estimate the frequency and other relevant characteristics of releases of radionuclides to the environment.

Level 3 PSA

• Public health and other societal consequences

- Procedures in place or envisaged to prevent core and/or fuel damage.
- Accident prevention and mitigation measures.
- Physical barriers to the release of radionuclides to the environment.

The contamination of land or food from the accident sequences that lead to a release of radioactive material to the environment.

Level 1 PSA

Severe Accident: Very low frequency of occurrence but large influence on risk

Definition:

Accident conditions more severe than a design basis accident and involving significant core degradation

that threaten CV integrity.

Level 2 PSA

BerAKHLAK

Level 3 PSA

- Level 1 (Core Damage)
- Level 2 (Containment Integrity)
- Level 3 (Effect on public/environment)

Power level

- Full power PSA (100%)
- Low power/shutdown PSA (LPSD)
 - ✓ Less than 20% power and refueling period
 - ✓ Need a separate model because possible initiating events and system configurations are significantly different from those during full power operation

Internal events and Hazard

- Internal (initiating) event PSA
 - ✓ Initiated by system/components failure internal to NPP
 - ✓ Example of internal events: LOCA, transients, loss of offsite power, SGTR
- Internal Hazard
 - ✓ Example of internal events: internal fire, internal flooding, turbine missiles, internal explosion, etc
- External Hazard
 - ✓ Example of external events: earthquake, fire, flooding, tsunami and human induced, etc

PSA Scope

Risk During LPSD Operation

Potential Risk During Shutdown State

- Potential core damage is announced during mid-loop operation is shutdown state
 - ✓ Loss of RHR (Residual Heat Removal)
- Most of accident could still occur
 - ✓ SBO, LOCA,LOOP, PORV stuck, etc

Degraded Safety During Shutdown State

- Degraded defence in depth by maintenance
- Open containment
- Configuration of safety system is changed
- Increase human error possibility
- Lack of risk assessment and emergency procedure

Risk During LPSD Operation

LPSD Risk and PSA

- Core damage frequency from PSA is comparable with that from full power operation
- Loss of shutdown cooling during mid-loop operation is the most important initiating event
- Plant configuration changes and human error are the dominant contributors
- Challenges in LPSD PSA
 - \checkmark Lack of data
 - ✓ A number of shutdown states, configuration changes, etc
 - ✓ Lack of procedures for emergency/abnormal events

LPSD PSA

 The LPSD operation mode is divide into a number of POSs (Plant Operation States) depending on: Reactor power, RCS (Reactor Cooling System) level/temperature, plant configuration, etc For each POS, PSA model is developed and CDF is calculated based on: possible initiating events, accident sequences, plant configuration and database Total CDE during LPSD operation mode is calculated by 	Objectives -	 Estimate CDF during LPSD operation mode and its contribution to total plant CDF Identify insight and relative importance of SCCs (Structure, System and Components) and operator actions.
	Overall process	 The LPSD operation mode is divide into a number of POSs (Plant Operation States) depending on: Reactor power, RCS (Reactor Cooling System) level/temperature, plant configuration, etc For each POS, PSA model is developed and CDF is calculated based on: possible initiating events, accident sequences, plant configuration and database Total CDE during LPSD operation mode is calculated by

Level 1 PSA

BerAKHLAK

Tasks of Level 1 PSA: Internal Initiating Event

Source: SSG-3 Rev.1

Level 1 PSA Internal IE for Power Operation Internal Hazards (flooding, Pool fire, Scpoe explosion, missiles) of Level 1 PSA External Hazards Shutdown (Natural, States Human Induced)

Simplified Process of Level 1 PSA

Level 1 PSA

FAMILIARIZATION WITH THE PLANT AND COLLECTION OF INFORMATION

- Technical specifications
- Descriptions of systems
- As built (as is) system drawings
- Electrical line drawings
- Control and actuation circuit drawings
- Procedures (Normal operating, Emergency, Maintenance, etc}

- Success criteria of systems
- Operating experience
- Operators' logs
- Discussions with operating personnel
- Plant operational records and reports of shutdowns
- Plant databases

- Plant layout drawings
- Drawings of piping location and routing
- Drawings of cable location and routing
- Plant walkdown reports
- Regulatory requirements
- Other relevant plant documents

Initiating Event

Initiating Event

• An event which creates a disturbance in the plant and has the potential of leading to core damage

Transient

- Loss of off-site power (LOOP)
- Station blackout (SBO)
- Main steam line break (MSLB)
- Steam generator tube rupture (SGTR)
- etc

LOCA

- Small break (SBLOCA), Medium break (MBLOCA), Large break LOCA (LBLOCA)
- Interfacing system LOCA

Initiating Event Analysis

- Identify and get raw data from plant operational experiences (EPRI, NUREG, etc)
- Analyze using master logic diagrams
- IE frequency using FMEA

Initiating event frequencies (example)

No.	Initiating Event	OPR-1000	NUREG/CR-5750
1	Large Loss of Coolant Accident	5.00E-06	5.00E-06
2	Medium Loss of Coolant Accident	4.00E-05	4.00E-05
3	Small Loss of Coolant Accident	4.80E-04	5.00E-04
4	Steam Generator Tube Rupture	7.10E-03	7.00E-03
5	Interfacing Systems LOCA	5.35E-08	2.00E-06
6	Reactor Vessel Rupture	2.66E-07	N/A
7	Large Secondary Side Break	1.10E-02	1.30E-02
8	Loss of Main Feedwater	8.40E-02	6.50E-02
9	Loss of Condenser Vacuum	4.90E-02	2.80E-02
10	Loss of a CCW Train	5.13E-01	9.70E-04
11	Loss of a 4.16KV AC bus	2.40E-02	1.40E-02
12	Loss of a 125V DC bus	1.70E-03	6.90E-04
13	Loss of Offsite Power	3.00E-02	2.40E-02
14	Station Blackout	3.66E-05	N/A
15	General Transients	9.46E-01	1.20E+00
16	Anticipated Transient Without Scram	9.00E-06	N/A
17	Loss of a 120V AC bus	1.30E-02	2.10E-03
18	RCP Seal LOCA	2.17E-03	2.50E-03

Simplified Structure of Level 1 PSA Calculation

- Core Damage is defined as failure of fuel cladding or pellets, not as melting of fuel
- Core Damage Frequency (CDF) is the probability per year of reactor operation (reactor year) of experiencing core damage accident
- Performance Target:
 - 1.0E-04 per reactoryear for existing plants
 - 1.0E-05 per reactoryear for future plant
 - < 1.0E-05 per reactor-year for Gen-III/III+

Simplified Structure of Level 1 PSA Calculation

Event Tree Modeling

Core Damage Frequency:

- Expected frequency (number of occurrences per unit time)
- Of accident sequences leading to core damage:
 - Core damage criteria: Uncovery and heatup of reactor core
- For all initiating events
- Core damage or not:
 - Determined whether the combination safety function against each accident sequence is enough or not to meet above core damage criteria
 - Success criteria

- It is a tool to analyze processes from a starting incident (group of initiating event) to final state, by preceding the process into branches (like tree). Usually, a two-branch tree is used.
- The upper and lower branches express success and failure, respectively.
- Probabilities for reaching the final state are analyzed by inputting the occurrence probability of the initiating event and branch probabilities (success and failure probabilities) of events (called "Event Headings").
- Deternine accident sequences by which lead to core damage.

Each probability of failure (branch probability) is evaluated by fault tree.

- Success Criteria:
 - Determined as the minimum level of performance required from the safety system.
 - Specify the mission time for the safety system based on the transient analysis carried out.
 - Also specify the requirements for the support systems based on the success criteria of the (frontline) safety system.
 - Need to identify the operator actions required to bring the plant to a safe, stable shutdown state.

For the simple calculation, Table 1 is a success criteria of LOCA (Loss of Coolant Accident) for NPP. LOCA occurrence frequency is assumed to be 1E-04/RY (Reactor-Year).

Table 1. Success Criteria of LOCA for NPP

Mitigating function	Minimum required system	System unavailability	
Reactor sub-criticality	RSS	RSS=3×10-7	
Core cooling	CCA or CCB or CCC	CCA= 1×10 ⁻² CCB= 2×10 ⁻² CCC= 3×10 ⁻²	1
Containment Vessel Heat Removal	HRA or HRB or HRC	HRA= 4×10 ⁻³ HRB= 5×10 ⁻³ HRC= 6×10 ⁻²	

$\frac{LOCA}{RSS} CCA CCB CCC HRA HRB HRC No. Final CoreCondition Condition Condition Condition Frequency 1 Success 2 Success 3 Success 4 Core damage 1.2 × 10-10/F 5 Success 6 Success 7 Success 8 Core damage 1.2 × 10-10/F 9 Success 1.2 × 10-10/F 1.2 × 10-10/F$			Reactor Subcri.	C	ore Cooli	ng	Cont He	ainment eat Remo	/essel val			
$HRA = 4 \times 10^{-3}$ $HRA = 4 \times 10^{-3}$ $HRB = 5 \times 10^{-3}$ $HRB $		LOCA	RSS	CCA	ССВ	ссс	HRA	HRB	HRC	No.	Final Core Condition	Sequence Occurrence Frequency
$\frac{1}{1} \frac{1}{1} \frac{1}$						Г				1	Success	
$\frac{1}{12} = \frac{1}{12} + 10^{-3} + 10$			ſ				Г			2	Success	
$\frac{1.2 \times 10^{-10}/F}{1.2 \times 10^{-10}/F}$						HRA= 4>	<10 ⁻³	Г		3	Success	
$\frac{1}{1 \times 10^{-4}} = \frac{1}{1 \times 10^{-4}} = \frac{1}{1 \times 10^{-2}} = \frac{1}{1 \times 10^{-12}/F} = \frac{1}{1 \times 1$							HRB= 5	×10-3	C × 10-2	4	Core damage	1.2×10 ⁻¹⁰ /RY
$\frac{1}{1}$ $\frac{1}$						Г		HRC=	= 6×10-2	5	Success	
$\frac{1}{1 \times 10^{-4}} / RY CCA = 1 \times 10^{-2}$ $CCB = 2 \times 10^{-2}$ $CCE = 3 \times 10^{-2}$				Г			Г			6	Success	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ty					L				7	Success	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										8	Core damage	$1.2 \times 10^{-12}/\text{RY}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		LOCA= 1×10 ⁻⁴	RY CCA=	1×10-2		Г				9	Success	
$CCB = 2 \times 10^{-2}$ $CCE = 2 \times 10^{-2}$ $CCC = 3 \times 10^{-2}$					Γ		Г			10	Success	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						L		Г		11	Success	
$\frac{13}{14} \text{Core damage} \frac{6 \times 10^{-10} / \text{RY}}{3 \times 10^{-11} / \text{RY}}$				CCB=	2×10 ⁻²					12	Core damage	2.4×10 ⁻¹⁴ /RY
14 Core damage $3 \times 10^{-11}/RY$				7	L					13	Core damage	6×10 ⁻¹⁰ /RY
			K55=3×10			CCC= 3×	10-2			14	Core damage	3×10 ⁻¹¹ /RY

CDF_{SL} = GSLOCA*(LTC + SHR*LTC + SHR*FB + HPSI*LTC + HPSI*LPSI + HPSI*O/A)

= GSLOCA*(LTC + SHR*FB + HPSI*LPSI + HPSI*O/A)

- Identify and model the possibilities in which a system may fail its function.
 - ✓ System weaknesses is identified.
 - ✓ in general, fault tree analysis technique is used.
 - ✓ CCF analysis & HRA are incorporated

- Fault Tree Analysis (FTA) is used to identify how a system, component, function or operation may fail
- Minimal Cut Set (MCS) is the minimum combination of events, which causes a system to fail.
- Use Laws of boolean algebra and logical

Law	Expression
Idempotent	A + A = A A . A = A
Commutative	A + B = B + A A . B = B . A
Distributive	A . (B + C) = A . B + A . C
Absorption	A + (A . B) = A

Symbol	Name of the Symbol	Description		
\bigcirc	Basic Event	A lower most event that can not be further developed		
	An Event/Fault	This can be a intermediate event (or) a top event. They are a result logical combination of lower level events.		
	OR Gate	Either one of the bottom event results in occurrence of the top event.		
	AND Gate	For the top event to occur all the bottom events should occur.		
	Undeveloped Event	An event which has scope for further development but not done usually because of insufficient data.		
	External Event	An event external to the system whicl can cause failure.		
	Inhibit Gate	The top event occurs only if the bottom event occurs and the inhibit condition is true.		

Boolean Algebra Reduction Example:

So the minimal cut sets are: CS1 = A CS2 = B.C.D meaning TOP event occurs if either A occurs OR (B.C.D) occurs.

Calculate the unavailability of simplified core injection system shown in Fig. 1 and Table 1:

- The system takes water from infinitely large tank with two parallel motor operated pumps (MOPs) and injects water into the reactor.
- One out of two motor operated pumps (MOPs) is sufficient to cool the core.
- Mission time: 24 hours.

Fig. 1. simplified Core Injection System

Component	Failure Mode	Failure data (mean)
Motor Operated	Failure to startup (MOPFS)	5E-4/d
Pump (MOP)	Failure to continuous operation (MOPFR)	5E-6/h
Check Valve	Failure to open (CKVFO)	1E-4/d

Table 1 Component Failure Data

Total component unavailability during mission time for MOPs is

UMOP= Failure to startup + (Failure to continuous operation x Mission time)

Database

• Data used in PSA

- ✓ Initiating event frequencies
- ✓ Component failure probabilities
- ✓ Component outage frequencies and durations
- ✓ Human error probabilities
- ✓ CCF (Common Cause Failure) parameters

• Generic data & Plant-Specific data

- ✓ Generic data: existing database world
- ✓ Plant-specific data: data from operating experiences of specific plant
- ✓ In general, generic data are compensated by plant-specific data using Bayesian inference technique

• Reliability data of component

- ✓ Failure rate to run
- ✓ Failure upon demand or failure to start
- ✓ Failure rate during stand-by
- ✓ Repair rate or repair time
- ✓ Unavailability for maintenance or testing

Quantification

Level 1 PSA Result

Contribution to CDF

Initiating Events	CDF			
	/yr	%		
Large LOCA	1.05E-06	12.7		
Medium LOCA	6.33E-07	7.7		
Small LOCA	1.86E-06	22.5		
Steam Generator Tube Rupture	1.14E-06	13.8		
Large Secondary Side Break	1.46E-07	1.8		
Loss of Feedwater	1.14E-06	13.8		
Loss of Condenser Vacuum	2.53E-08	0.3		
Loss of a CCW Train	1.25E-07	1.5		
Loss of a 4.16KV Bus	5.48E-10	< 0.1		
Loss of a 125V DC Bus	3.17E-07	3.8		
Loss of Off-site Power	4.00E-07	4.8		
Station Blackout	4.80E-07	5.8		
General Transients	3.59E-07	4.4		
Anticipated Transient Without Sc	3.15E-07	3.8		
Interfacing Systems LOCA	1.77E-09	< 0.1		
Reactor Vessel Rupture	2.66E-07	3.2		
TOTAL	8.25E-06	100		

Multi-unit PSA

