

PENGOLAHAN, ANALISIS, DAN INTERPRETASI DATA

Pelatihan Teknis Penelitian

Bogor, 20 Mei 2025

Widyaiswara Ahli Muda

PENGALAMAN

- Diklat Jabatan Fungsional Peneliti
- Diklat Teknis dan Kedinasan
- Narasumber di K/L terkait Pengolahan dan Analisis Data
- S1, S2 Statistika ITS
- Travelling
- +6285640470080
- kamaliahnaily@gmail.com

NAILY KAMALIAH, M.Si

Widyaiswara Ahli Muda

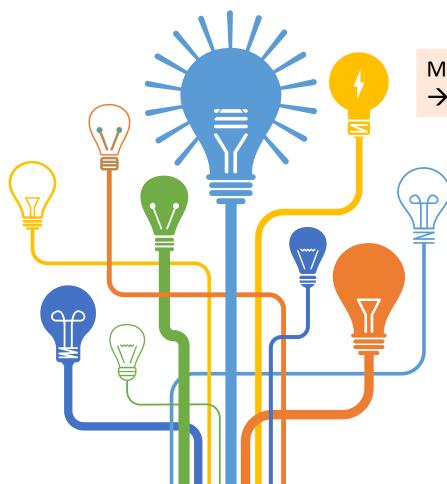
- S1 Manajemen UGM
- **S2 Ilmu Manajemen IPB**

08119590754

Yogtavia.ik@gmail.com

- Diklat Fungsional
- Diklat Teknis dan Kedinasan
- Pengembangan Kompetensi Lainya

Mampu membedakan berbagai metode pengolahan data dan melakukan analisis data kuantitatif yang sesuai dengan jenis data dan tujuan penelitian;



Kedudukan Pengolahan dan Analisis Data dalam Penelitian: PENTING

Bagian yang penting dalam metode ilmiah.

Data yang terkumpul tersebut dapat diberi arti dan makna yang berguna dalam memecahkan masalah penelitian.

> Membuktikan sesuatu dugaan yang belum terbukti

Mengubah data → informasi → kesimpulan

Kesimpulan: tergantung pada teknik pengolahan atau analisis yang digunakan, sehingga peneliti harus memahami metode pengolahan data

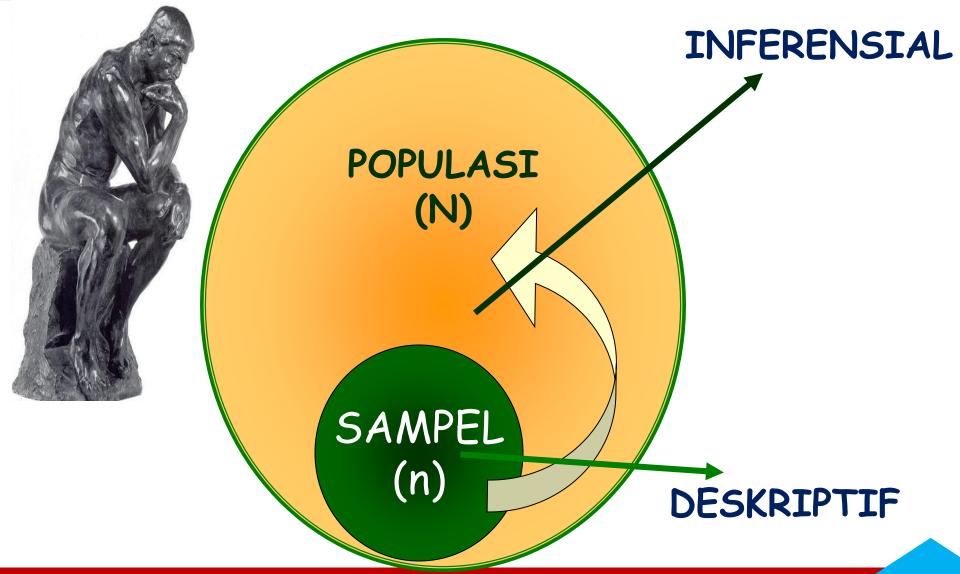
STATISTIKA

Ilmu yang mempelajari dan mengusahakan agar data menjadi **informasi yang bermakna**

Ilmu yang mempelajari teknik-teknik yang diperlukan dalam pengumpulan data dan penarikan kesimpulan berdasarkan contoh data (Mencerminkan Ciri Populasi)

PERLUKAH STATISTIKA ??

STATISTIKA


DESKRIPTIF

- **▶** Potret Kondisi
- Menggambarkan
 Berbagai
 Karakteristik Data
 melalui Tabel,
 Grafik, dan
 Gambar

INFERENSIAL

Untuk peramalan, perkiraan, pengambilan keputusan

STATISTIKA INFERENSIAL

PARAMETRIK

- > Asumsi Data Normal
- Skala Pengukuran data Metrik/Data Kuantitatif

NON PARAMETRIK

- ➤ Tidak memiliki asumsi sebaran tertentu
- ➤ Skala Pengukuran Data Non Metrik/Data Kualitatif

Statistik Parametrik dan Non Parametrik

Statistik Parametrik	Statistik Non-Parametrik					
Uji beda: uji t	Uji satu sampel: Uji Run, Uji normalitas, Uji					
Uji hipotesis	Chi-Square					
Uji t satu sampel (one sample t test)						
3. Uji t dua sample bebas (independent						
sample t test)						
4. Uji dua sampel berpasangan (paired t						
test)						
Uji beda: ANOVA	Uji dua sampel: Uji Mann-Whitney, Uji					
1. ANOVA	Kalmogorov Smirnov, Uji Moses dan Uji Wlad-					
2. MANOVA	Wolfowitz, Uji Wilcoxon, Uji Sign, Uji					
Repeated measure	MCNemar dan Uji Marginal Homogenity					
Korelasi: Pearson dan parsial	Uji lebih dari dua sampel: Uji Kruskal-Wallis,					
	Uji Median dan Jacknkheere-Terpstra, Uji					
	Friedman, Uji Konkordasi Kendal, Uji Cochran					
Regresi	Korelasi non parametrik: Cramer dan koefisien					
Uji Validitas dan reliabilitas	Kontigensi, korelasi lambda, korealsi spearman,					
	korelasi kendall, parsial Kendall, dan korealasi					
	Gamma dan Somers					

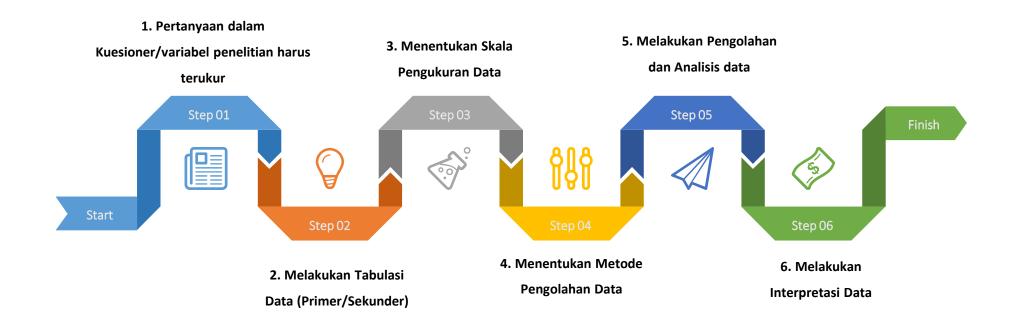
ISTILAH STATISTIKA

VARIABEL

Segala sesuatu yang menjadi objek dalam penelitian dan terukur

PARAMETER

Bilangan Nyata yg merupakan Karakteristik numerik dari populasi


STATISTIK

Bilangan Nyata yg merupakan karakteristik Karakteristik numerik dari sampel

ALUR PROSES PENGOLAHAN DAN ANALISIS DATA KUANTITATIF

1. Mendefinisikan variabel:

Segala sesuatu yang menjadi objek dalam penelitian dan terukur.

Jenis Kelamin:

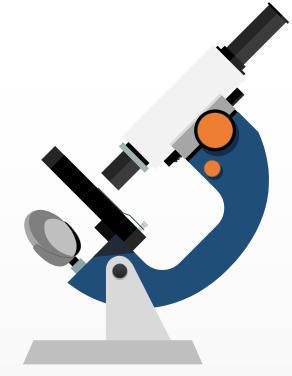
Laki-laki dan perempuan

Usia (tahun):

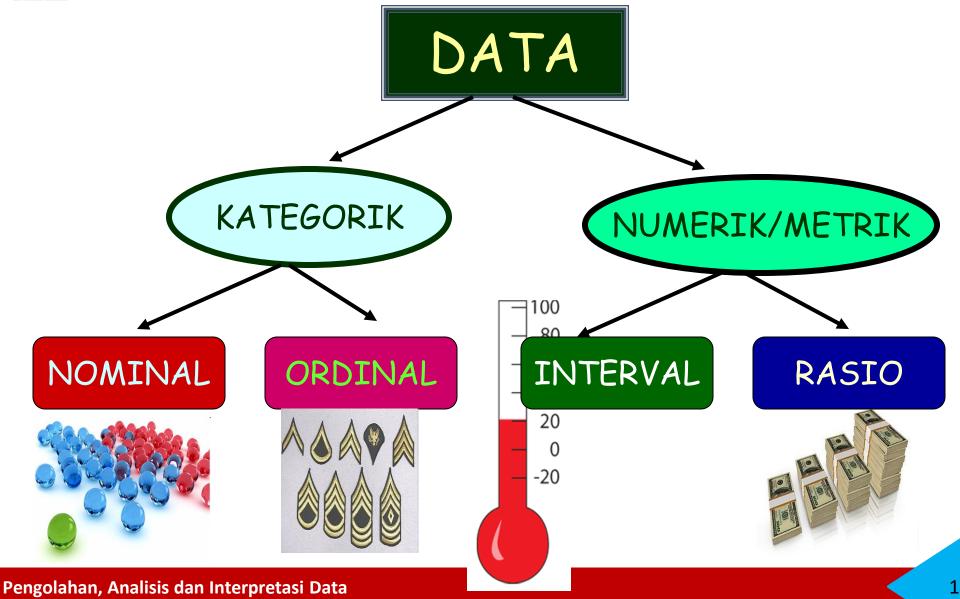
1,2,...

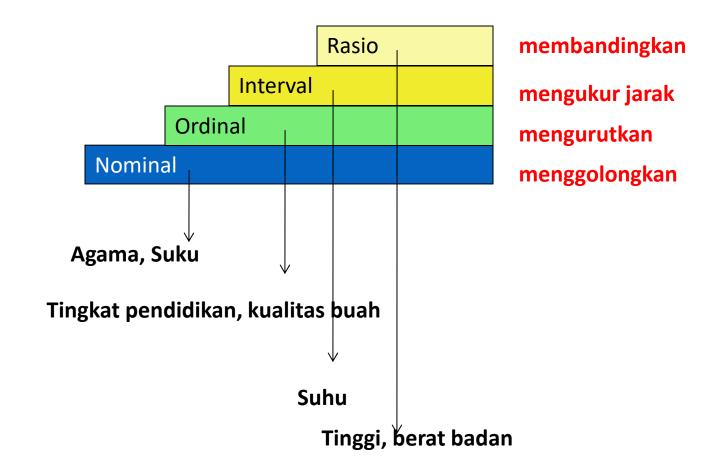
Pendidikan:


SD, SMP, SMA, PT


2. Mendefinisikan Skala Pengukuran Data:

Skala Pengukuran Data berkaitan dengan Metode Pengolahan Data yang akan digunakan





SKALA PENGUKURAN

Data kualitatif vs Data kuantitatif

SKALA PENGUKURAN DATA

Data	Skala Pengukuran Data	Membedakan	Mengurutkan	0 tidak Mutlak, Mengukur jarak,	Punya 0 mutlak, bisa membandi ngkan	Contoh
Kategorik/Non Metrik/ Data Kualitatif	Nominal	V	1	ı	-	Jenis Kelamin, Agama
	Ordinal	V	>	1	ı	Pendidikan terakhir
Numerik/Metrik/ Data Kuantitatif	Interval	V	>	V	-	Suhu
	Rasio	V	V	-	V	Tinggi Badan, Berat Badan

TINGKAT PENDIDIKAN

Berikut ini beberapa kemungkinan:

Tingkat Pendidikan Tertinggi yang Dicapai (ordinal)

• SD

- S1
- SMP
- S2
- SMA

S3

■ D3

Penilaian (Interval):

Skala Penilaian dari 0-10 (sangat kurang – sangat bagus)

Lama Belajar Di Jalur Pendidikan Formal (rasio)

Jumlah tahun yg ditempuh utk belajar di jalur pendidikan formal

- 1. Join at <u>www.Kahoot.it</u>
- 2. Masukan PIN
- 3. Masukan Nama dengan nama aseli bukan nama samaran ato nama panggilan kesayangan

PERSIAPAN PENGOLAHAN DATA

Menyunting (Memeriksa Kebenaran Data)

- Apakah data sudah lengkap dan sempurna
- Apakah data sudah jelas tulisannya untuk dibaca
- Apakah semua catatan sudah dapat dipahami
- Apakah semua data sudah konsisten
- Apakah ada jawaban yang tidak sesuai?

Mengkode-kan Data

Memberi angka, mengubah menjadi angka;

- Tujuan: Memudahkan pengolahan dengan komputer
- •Kualitatif: Data hasil wawancara, observasi, dokumen, foto, dan transkrip, (setelah ditelaah, direduksi data, dan disusun menjadi satuan-satuan, kemudian dikoding)

Tabulasi Data

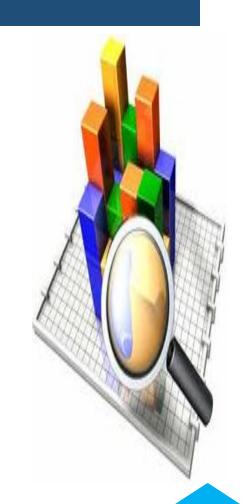
Memasukkan data dalam tabel

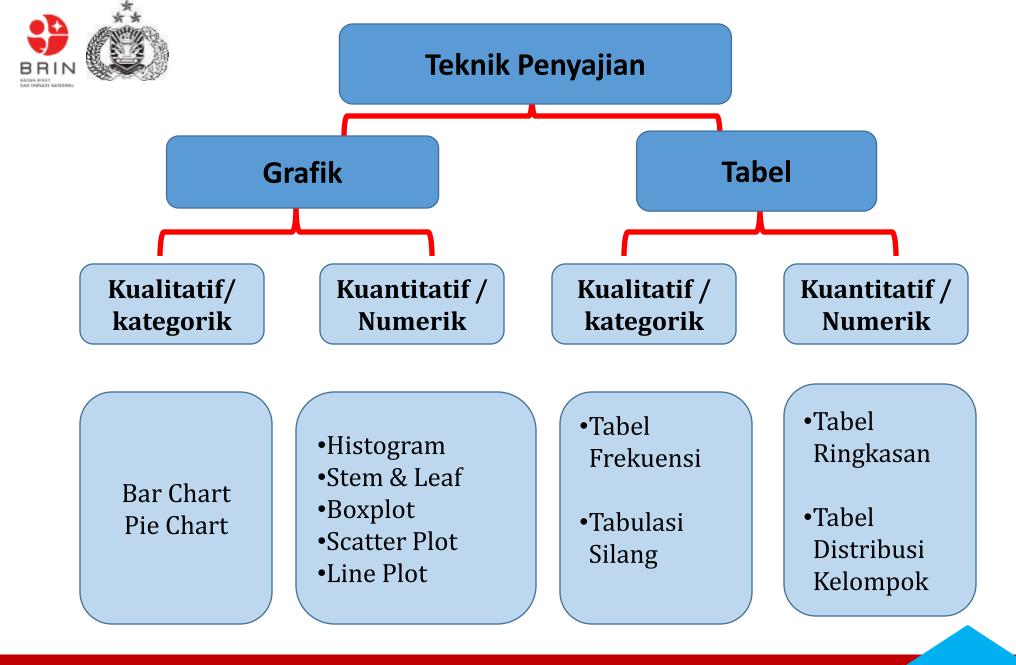
Memastikan Kebenaran Data

- Cek Missing value
- Validasi Data

2. Melakukan Tabulasi Data

TABULASI DATA PESERTA PPJFP GEL VII							
No. Absen	Jenis Kelamin (Laki- laki=1, Perempuan=	Status Pernikahan (Single=1, Menikah=2)	Tinggi Badan (cm)	Berat Badan (kg)	Usia (th)	Pendidikan Terakhir	Motivasi anda mengikuti Kegiatan PPJFP
1	1	1	170	79	31	2	
2	1	2	175	85	27	2	Lebih memahami bagaimana menjadi peneliti yang baik dan benar, cara penulisan karya ilmiah yang sesuai kaidah, mengetahui dunia peneliti di indonesia seperti
4	1	1	163	55	24	1	Mengetahui seluk beluk menjadi peneliti
5	2	2	153	59	29	2	Mendalami seluk beluk jabfung Peneliti dan Penelitian
6	1	2	165	60	32	1	Ingin memahami seluk beluk tentang Peneliti dan keahlian apa saja yang harus dimiliki seorang peneliti, sebagai syarat untuk diangkat menjadi jabfung peneliti
7	1	2	163	66	33	1	Mendapat basic melakukan penelitian ilmiah
8	2	1	154	48	25	1	Meningkatkan kompetensi di bidang penelitian sebelum diangkat menjadi Ahli Peneliti Pertama
9	2	2	161	63	25	1	Meningkatkan kompetisi sebelum diangkat menjadi peneliti pertama
10	1	2	170	65	42	2	Menambah wawasan ttg Kepenelitian





STATISTIK DESKRIPTIF

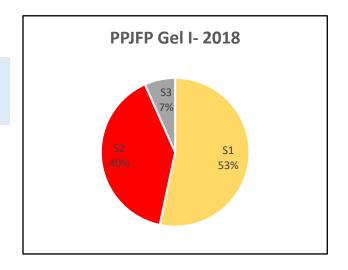
Tujuan utk menggambarkan keadaan atau karakteristik sampel/populasi yg dikaji.

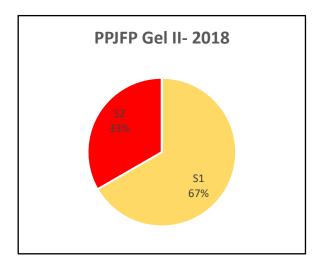
- **Penyajian** biasanya dalam bentuk tabel, grafik, diagram, peta, gambar, dll.
- Hasil perhitungan analisis yang dapat dihadirkan, yaitu, proporsi, modus, median, mean, variansi dan standar deviasi, maximum, minimum, range

PIE CHART

Sumber: Kepolisian Republik Indonesia Wilayah Kedu Resort Temanggung dalam Statistik Kabupaten Temanggung (2018)

KEJADIAN PERKELAHIAN MASSAL


Sumber: BPS

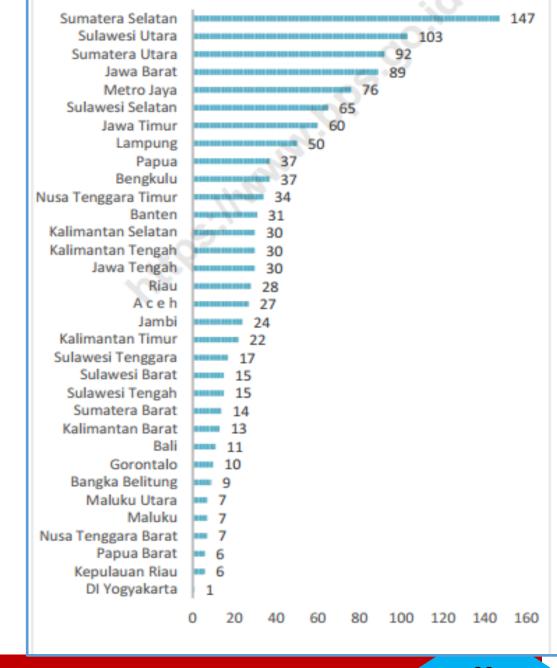


VISUALISASI DATA PADA PIE CHART

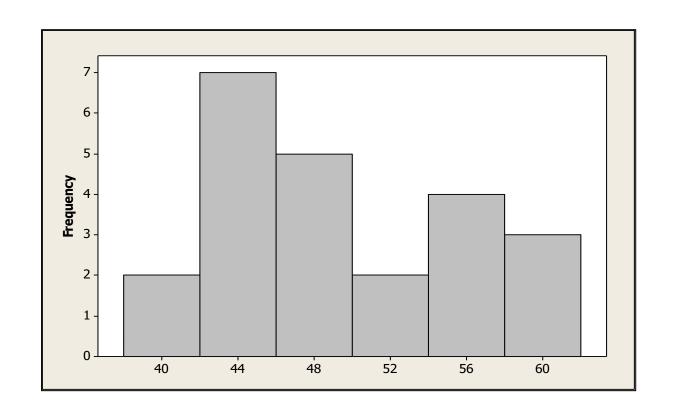
Tujuan Penggunaan Pie Chart: untuk Menampilkan % pada tiap kategori

Jangan membandingkan
Pie Chart 1 dengan lainnya

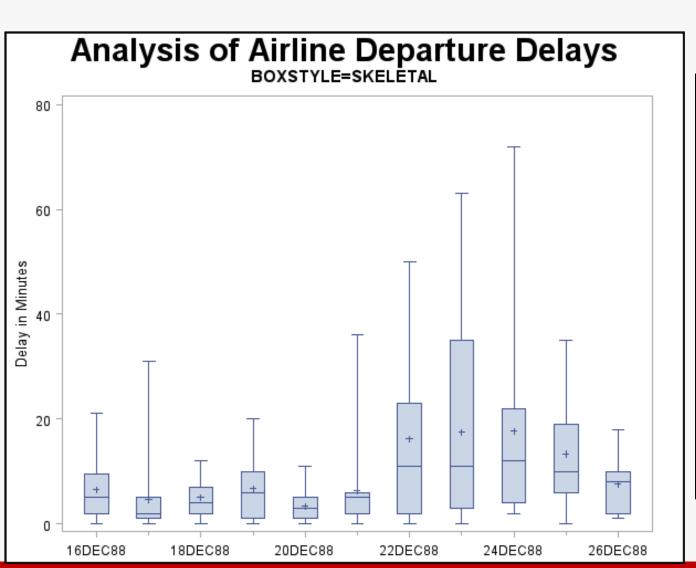
Lebih Baik Menggabungkan Label data pada potongan Pie (tidak menggunakan Legend)

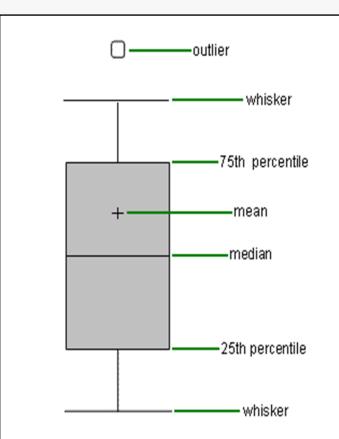

Menggunakan Visualisasi Piechart 2D

Maksimal terdiri dari 6 kategori (jika lebih, disarankan untuk menggunakan Barchart)

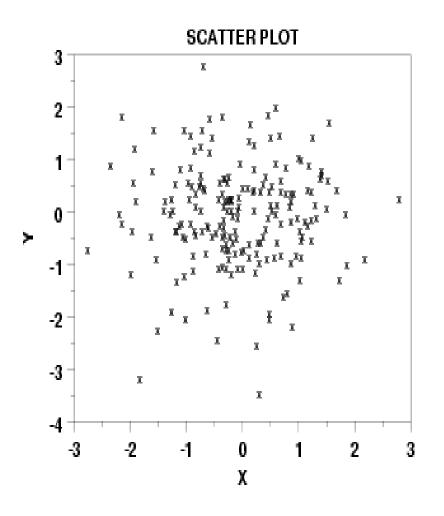

Histobar Jumlah Kejadian Kejahatan terhadap nyawa

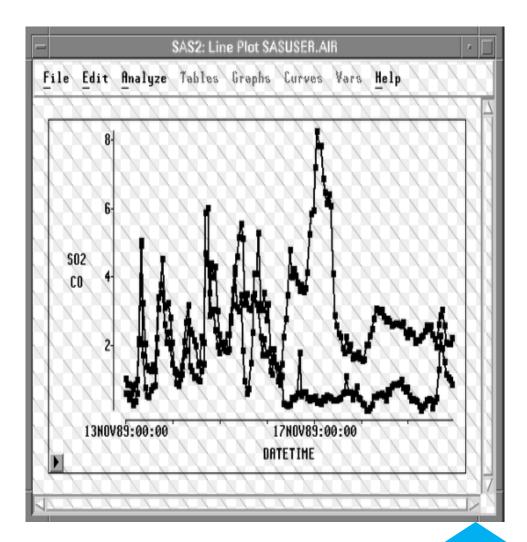
Sumber: Biro Pengendalian, Mabes POLRI 2017


Histogram: grafik dari sebaran frekuensi



Sebagain besar Kandidat Peneliti di Litbang Kementerian X berusia kurang dari 50 tahun, sedangkan frekuensi paling banyak berada pada usia 44 tahun.


BOX PLOT



Scatter Plot **VS** Line Plot

Tabulasi Silang **VS** Tabel Frekuensi

JenisKelamin * SikapThdTawuran Crosstabulation

Count			- / OF
	SikapT	5.00	
	Setuju (Tidak Setuju	Total
JenisKelamin Pria).\V\80'	70	130
On O Wanita	90	50	140
Total	150	120	270

Tinggi Badan (cm)	Frekuensi
152 – 155	10
156 – 159	16
160 – 163	20
164 – 167	27
168 – 171	15
172 – 175	12
Jumlah	100

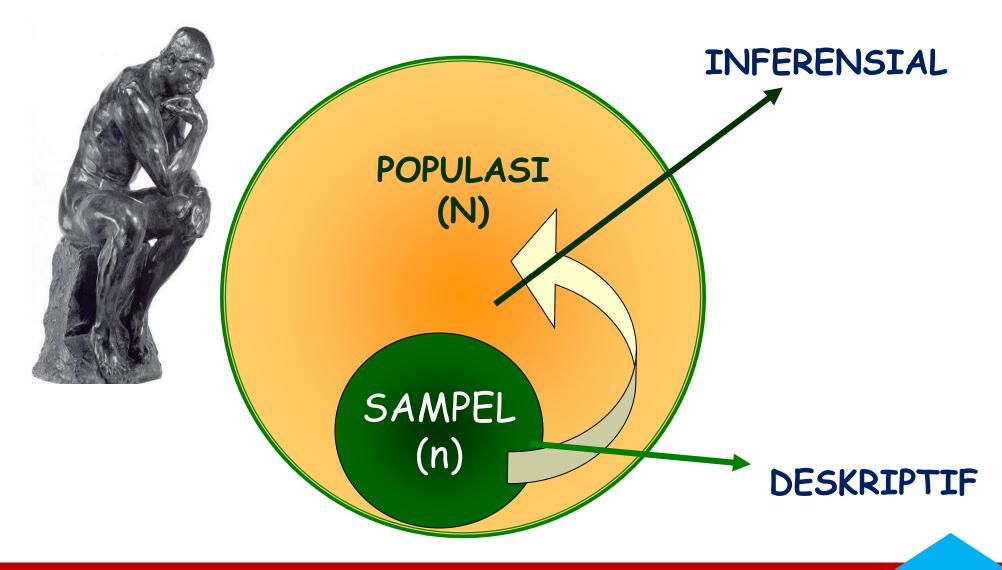
Tabel Ringkasan

Ringkasan statistik yang digunakan adalah jumlah data, rataan, median, standar deviasi, minimum, dan maksimum.

Hindarkan pemberian banyak informasi dalam kapasitas yang terbatas

Variabel	Jenis Kelamin	N	Mean	St Dev	Minimum	Median	Maxim um
Tinggi	Perempuan	9	160.56	5.43	151	161	169
	Laki-laki	12	166.25	5.07	159	165	176
Berat	Perempuan	9	53.89	5.62	45	54	60
	Laki-laki	12	64.75	8.04	52	63	82

SAYA PASTI BISA!!



B. STATISTIKA INFERENSIAL

- Tujuan akhir utk membuat inference atau menggeneralisasi hasil pengukuran sampel ke populasi.
- Dapat menganalisis sebagian data (sampel) atau keseluruhan data (populasi)
 - Dilakukan pendugaan parameter
 - Membuat dan menguji hipotesis
 - Membuat kesimpulan yang berlaku umum (generalisasi)

HIPOTESIS

- Suatu pernyataan / anggapan yang mempunyai nilai mungkin benar / salah atau suatu pernyataan /anggapan yang mengandung nilai ketidakpastian
- Misalnya:
 - Besok akan terjadi kecelakaan lalu lintas di Jalan Parung Raya Bogor → mungkin benar/salah
 - Peningkatkan jumlah bis penumpang umum menurunkan tingkat kecelakaan sepeda motor → mungkin benar/salah
 - Mobil A lebih baik dibandingkan dengan Mobil B → mungkin benar/salah

HIPOTESIS STATISTIK

Hipotesis NoI (H₀)

Suatu pernyataan yang bersifat status quo (tidak ada perbedaan, tidak ada perubahan, dst)

Memuat tanda "=", "≤ "," ≥

Hipotesis Alternatif (H₁)

Pernyataan lain yang berlawanan dengan (H₀)

Akan diterima jika H₀ ditolak (ada perbedaan, terdapat perubahan)

HIPOTESIS

$$H_0$$
: $\rho = 0$ (.... Korelasi X thd Y)

 H_1 : $\rho \neq 0$ (... korelasi X thd Y)

$$H_0: \beta_1=0$$
 (X....berpengaruh thd Y)

 H_1 : $\beta_1 \neq 0$ (Y ...berpengaruh thd Y)

- Ho: $\mu_1 = \mu_2 = \mu_3$ (semua μ adalah sama)
- $H_1: \mu_1 \neq \mu_2 = \mu_3$ (Tidak semua μ adalah sama) atau setidaknya salah satu dari μ berbeda dengan lainnya

HIPOTESIS

UJI HOMOGEN VARIANS

$$H_0$$
: $\sigma_1^2 = \sigma_2^2$ (varians/ varians ...)

$$H_1$$
: $\sigma_1^2 \neq \sigma_2^2$ (varians .../varians...)

UJI DISTRIBUSI NORMAL

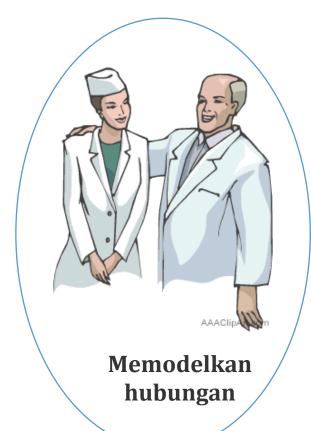
- H₀: Data berdistribusi normal
- H₀: Data tidak berdistribusi normal

Unsur Pengujian Hipotesis

- Hipotesis Nol (H₀): Sebuah hipotesis yang berlawanan dengan teori yang akan dibuktikan.
- **Hipotesis Alternatif** (H_1) : Sebuah hipotesis (kadang gabungan) yang berhubungan dengan teori yang akan dibuktikan
- Taraf nyata α diartikan sebagai peluang kita melakukan kesalahan untuk menyimpulkan bahwa H_0 salah, padahal sebenarnya *statement* H_0 yang benar.
- **P-value** dapat pula diartikan sebagai besarnya peluang melakukan kesalahan apabila kita memutuskan untuk menolak H_0 (Kurniawan, 2008). Di SPSS (Sig). Sig Bernilai kecil, maka Tolak Hipotesis Nol (H_0)
- Misal α yang digunakan adalah 0.05, jika *p-value* sebesar 0.021 (< 0.05), maka kita berani memutuskan menolak H_0 .

H0: sig > alpha

H1: sig < alpha


alpha: bisa 5%, 10%

ANALISIS DATA

Mendeskripsikan

Membandingkan

Memodelkan Hubungan

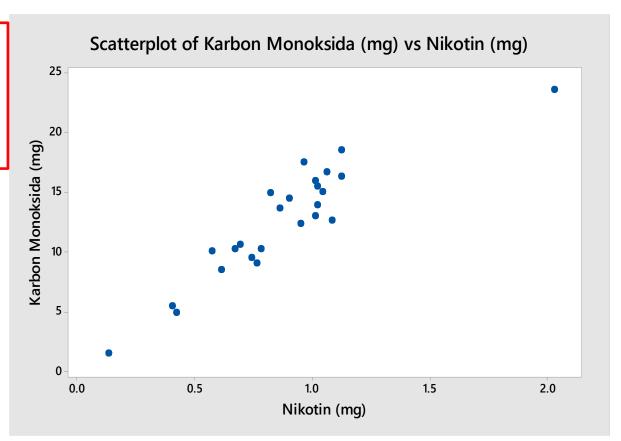
PERHATIKAN ILUSTRASI BERIKUT INI

ILUSTRASI 1: Apakah ada hubungan antara jumlah kandungan nikotin dalam rokok dengan kandungan gas karbon monoksida yang dihasilkan rokok?

Variabel & skala pengukuran:

Jumlah kandungan nikotin

(mg): Rasio


Karbon monoksida (mg):

Rasio vs Rasio

Hubungan:

Analisis Korelasi

Korelasi Pearson (NUMERIK VS NUMERIK

Sumber: Statistics for Engineering and the Sciences (1995)

Keterkaitan antara kandungan nikotin dengan gas karbon monoksida yang dihasilkan

Karena Nilai Sig. < alpha (0,05)→ Ada
Korelasi antara kandungan nikotin dan gas
karbon monoksida yang dihasilkan
+0,919 berarti semakin tinggi kandungan
nikotin dalam rokok, maka semakin banyak
pula gas karbon monoksida yang dihasilkan

alpha: 5%

Langkah-langkah Pengujian Hipotesis:

1. Menentukan pasangan Hipotesis Statistiknya

 H_0 : ρ =0 (tidak terdapat korelasi)

H₁: ρ≠0 (terdapat korelasi), sehingga:

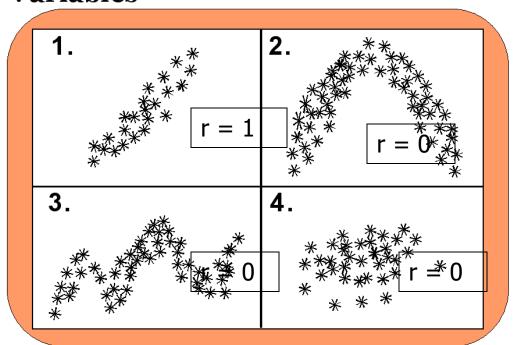
Hipotesis:

H₀: Tidak ada Korelasi antara banyaknya nikotin(X) dan gas karbon moboksida yang dihasilkan (Y)

H₁: Ada Korelasi antara banyaknya nikotin(X) dan gas karbon moboksida yang dihasilkan (Y)

- 2. Menentukan r hitung (nilai korelasi) r(X, Y)=0,865
- 3. Menentukan Nilai r tabel r tabel=0,444
- 4. Kriteria Penolakan H₀

Tolak H₀, jika r hitung > r table atau sig < p-value


Tabel Nilai-nilai r Product Moment

N	Taraf Sig	ınifikansi	l N	Taraf Sig	nifikansi
	5 %	1 %	- "	5 %	1 %
3	0,997	0,999	38	0,320	0,413
4	0,950	0,990	39	0,316	0,408
5	0,878	0,959	40	0,312	0,403
6	0,811	0,917	41	0,308	0,398
7	0,754	0,874	42	0,304	0,393
8	0,707	0,834	43	0,301	0,389
9	0,666	0,798	44	0,297	0,384
10	0,632	0,765	45	0,294	0,380
11	0,602	0,735	46	0,291	0,376
12	0,576	0,708	47	0,288	0,372
13	0,553	0,684	48	0,284	0,368
14	0,532	0,661	49	0,281	0,364
15	0,514	0,641	50	0,279	0,361
16	0,497	0,623	55	0,266	0,345
17	0,482	0,606	60	0,254	0,330
18	0,468	0,590	65	0,244	0,317
19	0,456	0,575	70	0,235	0,306
20	0,444	0,561	75	0,227	0,296
21	0,433	0,549	80	0,220	0,286
22	0,423	0,537	85	0,213	0,278
23	0,413	0,526	90	0,207	0,270
24	0,404	0,515	95	0,202	0,263
25	0,396	0,505	100	0,195	0,256
26	0,388	0,496	125	0,176	0,230
27	0,381	0,487	150	0,159	0,210
28	0,374	0,478	175	0,148	0,194
29	0,367	0,470	200	0,138	0,181
30	0,361	0,463	300	0,113	0,148
31	0,355	0,456	400	0,098	0,128
32	0,349	0,449	500	0,088	0,115
33	0,344	0,442	600	0,080	0,105
34	0,339	0,436	700	0,074	0,097
35	0,334	0,430	800	0,070	0,091
36	0,329	0,424	900	0,065	0,086
37	0,325	0,418	1000	0,062	0,081

Correlation Analysis " $-1 \le \rho < 1$ "

Relationships between Continuous Variables

Analisis	Skala Pengukuran Data	Metode Pengolahan Data
Hubungan	Numerik	Korelasi Pearson
	Numerik	Korciasi i carson
Hubungan	Minimal Ordinal	Korelasi Spearman
Trabungan	Minimal Ordinal	Koreiasi Spearman
Hubungan	Kategorik	Chi Sauara
парапдап	Kategorik	Chi-Square
	Y: Numerik	Regresi Sederhana (1 var X) /Berganda (Var X>1)
	X: Numerik	Regresi Sederilaria (1 var x)/Bergarida (var x>1)
Dongaruh	Y: Numerik	Pograci Dummy
Pengaruh	X: (ada variable) Kategorik	Regresi Dummy
	Y: Kategorik	Pograci Lagistik
	X: Numerik/Kategorik	Regresi Logistik
	1 sampel dgn kontanta	One sample T-Test
Membandingkan	2 sample (responden berbeda)	Independent sample t-test
	2 sample (responden sama)	Paired sample t-test
Pengaruh Perbedaan	1 Faktor	One way ANOVA
Perlakuan (membandingkan		
sample	2 Faktor	Two way ANOVA
>2 sample)		

Apakah ada korelasi antara jumlah kejadian kecelakaan lalu lintas yang disebabkan karena sopir mengantuk?

LATIHAN SOAL

Sopir mengantuk	Jumlah kecelakaan
4	192
3	91
15	229
8	200
6	183
10	230
9	208

Sumber: Data Ditlantas Polda Riau

One-Sample Kolmogorov-Smirnov Test kecelakaan mengantuk Normal Parameters a,b Mean 7.86 190,43 Std. Deviation 4,059 47,254 Most Extreme Differences Absolute ,156 .295 Positive .201 .156 Negative -.116 -,295 Test Statistic

.200°.d

- Test distribution is Normal.
- b. Calculated from data.

Asymp. Sig. (2-tailed)

- c. Lilliefors Significance Correction.
- d. This is a lower bound of the true significance.

Apakah ada korelasi antara jumlah kejadian kecelakaan lalu lintas yang disebabkan karena sopir mengantuk?

Hipotesis Uji Distribusi Normal

H0: Data berdistribusi Normal

H1: Data tidak berdistribusi Normal

Hipotesis Korelasi

H0: Banyaknya sopir yang mengantuk berkorelasi dengan banyaknya jumlah kecelakaan

H1: Banyaknya sopir yang mengantuk tidak berkorelasi dengan banyaknya jumlah kecelakaan

Correlations

		Jumlah_Kece lakaan	Mengantuk
Jumlah_Kecelakaan	Pearson Correlation	1	758*
	Sig. (2-tailed)		,048
	N	7	7
Mengantuk	Pearson Correlation	,758	1
	Sig. (2-tailed)	,048	
	N	7	7

^{*.} Correlation is significant at the 0.05 level (2-tailed).

KESIMPULAN

Karena Nilai Sig. < alpha (0,05) → Ada Korelasi antara Banyaknya sopir yang mengantuk saat mengendarai kendaraan berkorelasi dengan banyaknya jumlah kecelakaan

+0,758 (tanda positif) Berarti semakin banyak sopir yang mengantuk saat mengendarai kendaraan, maka semakin meningkat juga jumlah kecelakaan

Ilustrasi 2 : Apakah ada Korelasi antara Jumlah kecelakaan dengan waktu kejadiaan

II.a.b		Waktu				
Jumlah Kecelakaan	00 sd 06.00	06.00 s.d. 12.00	12.00 sd 18.00	18.00 s.d. 24.00		
67	7	20	21	19		
34	4	13	10	7		
39	6	11	13	9		
72	11	20	23	18		
81	14	18	26	23		

Sumber: Modul Data Kecelakaan Lalu Lintas, 2016

Correlations

			Jumlah Kecelakaan	Waktu
Spearman's rho	Jumlah Kecelakaan	Correlation Coefficient	1,000	,373
		Sig. (2-tailed)		,105
		N	20	20
	Waktu	Correlation Coefficient	,373	1,000
		Sig. (2-tailed)	,105	
		N	20	20

Interval vs Ordinal

Hubungan: Analisis Korelasi Spearman

Korelasi SPEARMAN (NUMERIK VS MINIMAL ORDINAL)

Contoh lain Pertanyaan Penelitian

Bagaimana hubungan antara tindak kejahatan dengan aspek ekonomi

Teori:

- Tingkat kejahatan berhubungan erat dengan tingkat kesenjangan sosial-ekonomi.
- Makin tinggi tingkat kesenjangan sosial-ekonomi, maka makin tinggi pula tingkat kejahatan
- Tingkat tindak kejahatan juga dapat diturunkan dengan menurunkan angka pengangguran. Karena semakin banyak pengangguran, maka semakin meningkat tindak kejahatan.

• Tindak kejahatan (Perampokan, Penjambretan, dll)

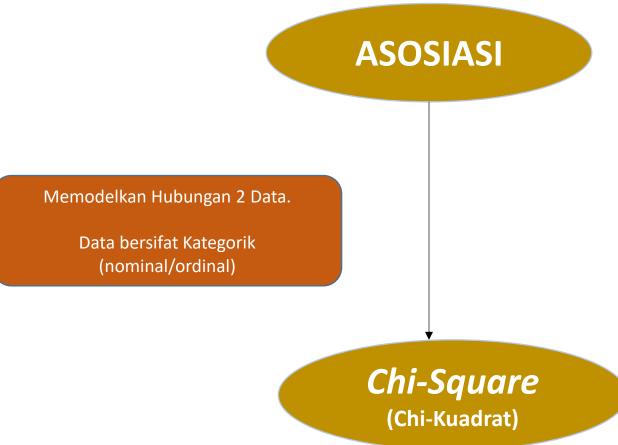
Skala pengukuran data: ?????

Aspek ekonomi (penghasilan, Pekerjaan, dll)

Skala pengukuran data: ?????

Ilustrasi 3

 Penelitian dilakukan untuk mengkaji apakah ada asosiasi/hubungan antara gender dengan aktifitas


Kategorik vs Kategorik

Hubungan: Analisis Chisquare

Chi-Square

Jenis Kelamin * Kapan pertama kali terlibat tawuran. Crosstabulation

Count

Kapan pertama kali terlibat tawuran.								
		Kelas VII	Kelas VIII	Kelas IX	Kelas X	Kelas XI	Kelas XII	Total
Jenis Kelamin	Laki-laki	9	19	26	56	8	18	136
	Perempuan	3	10	10	21	7	5	56
Total		12	29	36	77	15	23	192

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	
Pearson Chi- Square	3.503 ^a	5	.623	
Likelihood Ratio	3.348	5	.647	Г
Linear-by-Linear Association	.049	1	.824	
N of Valid Cases	192			

a. 2 cells (16.7%) have expected count less than 5. The minimum expected count is 3.50.

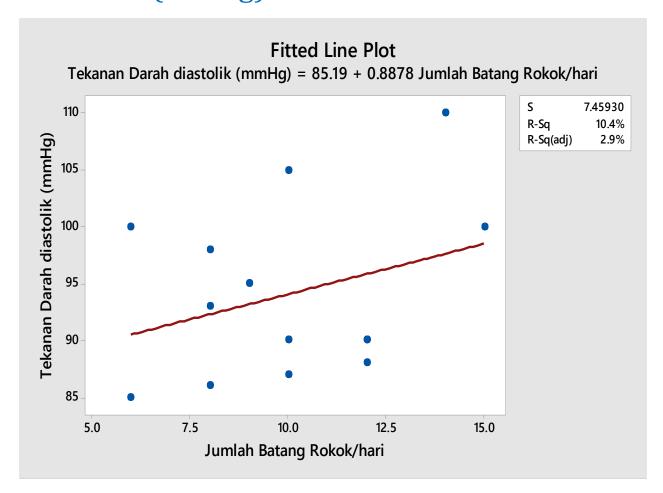
Hipotesis:

Ho: tidak ada hubungan/asosiasi gender dengan awal keterlibatan tawuran

H1: ada hubungan/asosiasi gender dengan awal keterlibatan tawuran tawuran

Pertanyaan penelitian: apakah ada hubungan antara Motivasi dengan tindak kejahatan seksual

Motivasi Kejahatan seksual:


- 1. Motif keinginan seksual
- 2. Motif dominasi laki-laki
- 3. Motif status social (untuk melindungi atau meningkatkan status social)

Kejahatan seksual: Perkosaan, Intimidasi seksual, Pelecehan seksual, Eksploitasi seksual, Perdagangan perempuan., pemaksaan perkawinan, pemaksaan kehamilan, dll

Ilustrasi 4: Bagaimana pengaruh jumlah rokok yang dihisap setiap hari (batang) terhadap tekanan darah diastolik (mmHg)?

Persamaan Regresi Linier

$$Y = 85,19 + 0,88X$$
Konstanta/intersep
Nilai Y saat X=0

Slope: Besar perubahan Y akibat kenaika satuan X

Contoh Penggunaan Metode Regresi

Pertanyaan Penelitian:

Bagaimana Pengaruh Pendidikan, Kemiskinan, terhadap tingkat kriminalitas?

Y: Melakukan tindakan kriminal pd tahun X

X1: Pendidikan terakhir

X2: Kemiskinan

Analisis Regresi

- Terdapat Hubungan sebab akibat variabel X dan Y
- □ Variabel dependent (tidak bebas): variabel yang dipengaruhi oleh variabel independent → variabel Y
- □ Variabel independent (bebas): variabel yang mempengaruhi variabel dependent → variabel X
- Dapat digunakan untuk prediksi Nilai Variabel Y dengan X tertentu
- Regresi Sederhana: Regresi dengan 1 variabel Independen (x)
- Regresi Berganda: Regresi dengan variabel independen (x) lebih dari 1.

UJI T

One Sample T Test

Membandingkan 1 sample/populasi dengan Nilai tertentu

Independen Sample T test

Membandingkan 2 sample/populasi yang saling bebas

Paired Sample T Test

Membandingkan 2 sample/populasi yang berpasangan

Ilustrasi 5

Kepala Kepolisian Resor (Kapolres) di Kota X menetapkan standar internal bahwa rata-rata waktu respons polisi terhadap laporan kejahatan ringan (seperti pencurian motor atau penipuan) tidak boleh lebih dari 15 menit. Untuk memastikan standar ini terpenuhi, tim analis data kepolisian secara acak memilih 25 laporan kejahatan ringan dari bulan lalu dan mencatat waktu respons (dalam menit) untuk setiap laporan

Apakah data ini menunjukkan bahwa rata-rata waktu respons polisi di Kota X **berbeda secara signifikan** dari standar internal 15 menit yang ditetapkan???

No. Laporan	Waktu Respons (Menit)
1	14.8
2	16.2
3	15.0
4	13.5
5	17.1
6	14.9
7	15.5
8	16.8
9	14.0
10	15.3

No.	Waktu
Laporan	Respons
	(Menit)
11	16.0
12	13.9
13	15.8
14	15.2
15	13.0
16	17.5
17	14.5
18	15.6
19	16.5
20	14.7

No. Laporan	Waktu Respons (Menit)
21	15.1
22	15.9
23	14.2
24	16.9
25	15.4

One-Sample Kolmogorov-Smirnov Test

		Waktu Respon (menit)
N		25
Normal Parameters ^{a,b}	Mean	14,9252
	Std. Deviation	1,12688
Most Extreme Differences	Absolute	,166
	Positive	,162
	Negative	-,166
Test Statistic		166
Asymp. Sig. (2-tailed)		,072°

- Test distribution is Normal.
- b. Calculated from data.
- c. Lilliefors Significance Correction.

Hipotesis One sample T-Test

 H_0 : Waktu respon = 15 menit

H₁: Waktu respon≠15 menit

Pvalue: 0,743 (> 0,05)

Kesimpulan: Waktu Respon sama

dengan standar internal yang

diterapkan 15 menit (Terima H₀)

Hipotesis Distribusi Normal

H₀: Data berdistribusi Normal

H₁: Data tidak berdistribusi Normal

T-Test

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Waktu Respon (menit)	25	14,9252	1,12688	,22538

One-Sample Test

				Te	est Va	alue = 15	ı			
						Me		Mean	95% Confidence Differ	
	t	df	Si	g. (2-tailed)		ifference	Lower	Upper		
Waktu Respon (menit)	-,332	24		,743		-,07480	-,5400	,3904		

Ilustrasi 6

Seiring meningkatnya jumlah penduduk dan perkembangan ekonomi tentunya menyebabkan terjadinya kenaikan volume lalu lintas di suatu wilayah perkotaan, dan juga tentunya setiap kendaraan menghasilkan suara bising, setiap kebisingan tergantung dari masing-masing jenis kendaraan yang digunakan. Polusi suara atau suara bising menjadi salah satu masalah yang perlu diatasi di wilayah perkotaan.

Perancangan kota yang tidak mengikuti aturan-aturan perancangan kota tentunya akan memberikan efek yang buruk salah satunya kebisingan yang dimana semakin lama semakin meningkat sesuai dengan pertambahan kebutuhan akan transportasi. Dalam beberapa permasalahan kebisingan yang terjadi di wilayah perkotaan, tentunya suara bising yang dihasilkan oleh kendaraan bermotor ini sering terjadi pada jam—jam kerja atau jam—jam sibuk seperti pada pagi hari, siang hari, dan sore hari ketika sudah pada jam pulang kerja Pengujian ini bertujuan untuk membandingkan antara tingkat kebisingan siang dan malam hari, apakah terdapat perbedaan atau tidak

Sumber: Analisis Pengaruh Volume Lalu Lintas Terhadap Tingkat Kebisingan Kawasan Jalan Sungai Saddang Lama. Jurnal Media Teknik Sipil 2, NO. 2, NOVEMBER 2024 e-ISSN: 2987-2383

Independent Sample T-Test

Pagi	Malam
74,61	77,41
77,51	76,08
75,64	76,24
72,36	73,77
72,95	76,32
70,87	75,81
73,13	69,53
73,1	70,96
72,54	70,44
75,02	65,12
74,28	64,13
75,3	73,19

Hipotesis

H₀: Tingkat Kebisingan di pagi hari= malam hari

H₁: Tingkat Kebisingan di pagi hari ≠di malam hari

T-Test

Hipotesis Distribusi Normal

H₀: Data berdistribusi NormalH₁:Data tidak berdistribusi Normal

Tests of Normality

		Kolm	ogorov-Smir	nov ^a			
	Waktu	Statistic	df	Sig.	Statistic	df	Sig.
Tingkat kebisingan	Pagi	,175	12	,200*	,974	12	,951
	Malam	,193	12	,200*	,888	12	,112

- *. This is a lower bound of the true significance.
- a. Lilliefors Significance Correction

Hipotesis Ragam/varians

H0: Varians/ragam sama

H1: Varians/ragam tidak sama

	Waktu	Ν	Mean	Std. Deviation	Std. Error Mean
Tingkat kebisingan	Pagi	12	73,9425	1,79490	,51814
	Malam	12	72,4167	4,45609	1,28636

sama

Group Statistics

Hipotesis Uji Independen sample T-Test

H₀: Tingkat Kebisingan di pagi hari=

H₁: Tingkat Kebisingan di pagi hari ≠di malam hari

Independent Samples Test Levene's Test for Equality of t-test for Equality of Means Variances 5% Con Mean Std Error df Lower Sig. (2-tailed) Difference Difference Equal variances 9,299 .006 Tingkat kebisingan 22 283 1,52583 1.38679 Populasi memiliki .52583 -1.431,100 14,478 289 1.38679 ragam yang tidak

Pvalue: 2,89 (> 0,05)
Kesimpulan: Tingkat
kebisingan pada siang
dan malam hari
sama(Gagal Tolak

Ilustrasi 7

Paired Sample T-test

Kedua Kelompk saling berkaitan

Penyalahgunaan narkotika dan psikotropika masih belum dapat teratasi hingga saat ini. Kasus penyalahgunaan narkotika dan psikotropika terus meningkat di Indonesia, terutama di kalangan generasi Z. Oleh karena itu, perlu dilakukan sosialisasi secara terus menerus kepada generasi Z untuk meningkatkan kesadaran dan pengetahuan mereka akan dampak penyalahgunaan narkotika dan psikotropika.

Generasi Z yang berusia antara 26 hingga 35 tahun telah disosialisasikan mengenai penyalahgunaan narkotika dan psikotropika. Mengingat Jakarta Utara merupakan salah satu daerah yang menjadi basis penyalahgunaan narkoba di DKI Jakarta, maka generasi Z di Jakarta Utara diberikan kegiatan sosialisasi. Kegiatan diawali dengan pre-test, kemudian penyampaian materi, tanya jawab, dan post-test.

Hipotesis

H₀: Pretest = Post Test (sosialisasi tidak efektif)

H₁: Pretest ≠ Post Test (sosialisasi efektis)

Pre Test	Post Test				
54	92				
60	91				
62	90				
59	83				
57	80				
55	79				
59	82				
55	73				

Output Paired Sample T-Test

NPar Tests

One-Sample Kolmogorov-Smirnov Test

		PreTest	PostTest
N		8	8
Normal Parameters ^{a,b}	Mean	57,84	83,74
	Std. Deviation	2,714	6,539
Most Extreme Differences	Absolute	,218	,190
	Positive	,209	,152
	Negative	-,218	-,190
Test Statistic		,210	,190
Asymp. Sig. (2-tailed)		,200°.d	,200°.d
a Test distribution is bloom	val		

- b. Calculated from data.
- Lilliefors Significance Correction.
- d. This is a lower bound of the true significance.

T-Test

[DataSet6]

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	PreTest	57,84	8	2,714	,960
	PostTest	83,74	8	6,539	2,312

Paired Samples Correlations

	И	Correlation	Sig.
Pair 1 PreTest & PostTest	8	,403	,322

Paired Samples Test

	Paired Differences							
			Std. Error	95% Confidence Interval of the Difference				
	Mean	Std. Deviation	Mean	Lower Upper		t	df	Sig. (2-tailed)
Pair 1 PreTest - PostTest	-25,900	5,985	2,116	-30,904	-20,896	-12,240	7	,000

Hipotesis Distribusi Normal

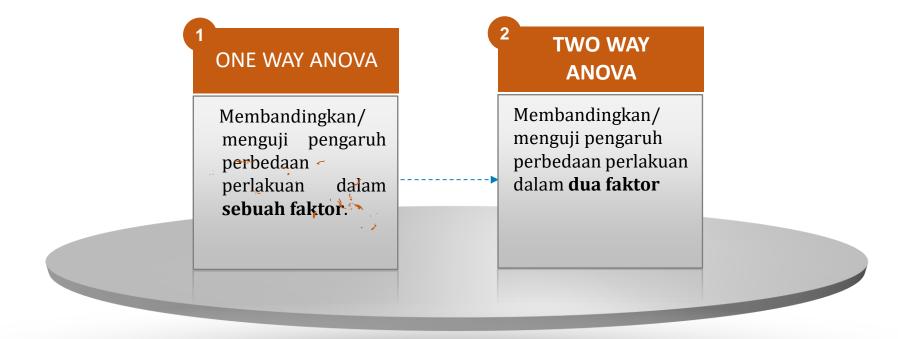
H₀: Data berdistribusi NormalH₁:Data tidak berdistribusi Normal

Pvalue: 0,00 (> 0,05)

Kesimpulan: Sosialisasi

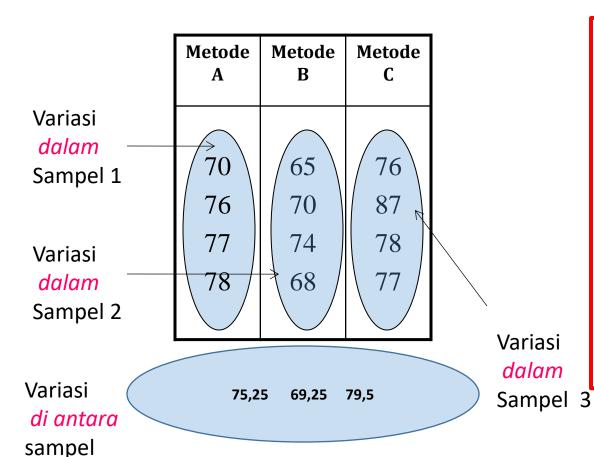
efektif (Tolak H₀)

Contoh Penelitian:


Uji Perbandingan tingkat stress dan tingkat resiliensi narapidana yang baru masuk dan narapidana yang akan segera bebas

(sumber: jurnal kedokteran univ diponegoro)

Resiliensi merupakan kemampuan untuk beradaptasi pada keadaan yang menekan, kemampuan resiliensi dibutuhkan narapidana untuk menghadapi stressor sehingga narapidana baru masuk dapat beradaptsi dengan baik dan narapidana yang akan segera bebas memiliki kesiapan dan percaya diri untuk kembali lagi ke masyarakat.


ANOVA

Proses ANOVA

Ilustrasi 8

Seorang guru SMA mengadakan penelitian tentang keunggulan metode mengajar dengan beberapa 3 macam metode pengajaran.

Bila data yang didapat seperti pada tabel di samping, apakah tersebut memiliki hasil yang sama?

ketiga metode mengajar Variasi

Kegunaan ANOVA

Jika >2 Nilai Tengah \rightarrow uji Z dan t-test tidak efektif lagi karena dilakukan berulang kali \rightarrow akan menyebabkan error type I (α) menjadi besar $\alpha^* = 1 - (1 - \alpha)^n$

ANOVA:

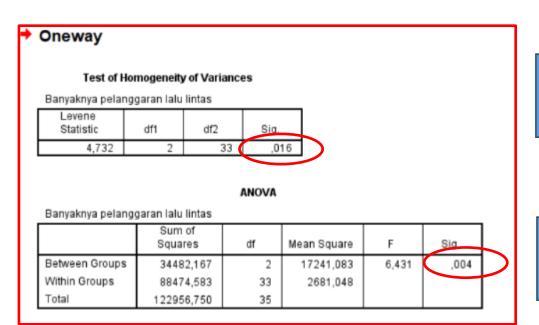
One Way ANOVA: Membandingkan/ menguji pengaruh perbedaan perkakuan dalam **sebuah faktor**.

Two Way ANOVA: Membandingkan/ menguji pengaruh perbedaan perkakuan dalam **dua faktor**

Tujuan Penelitian: ingin mengetahui pelanggaran *traffic Light* di simpang bendogantungan jalan raya Jogya Solo. Secara spesifik tulisan ini bertujuan untuk mengetahui **beda** pelanggaran lalu lintas berdasarkan jenis pelanggarannya.

Ki Agenç	Ki Ageng Pandanaran		o sisi timur	Jogja solo sisi barat		
banyaknya	banyaknya	banyaknya	banyaknya	banyaknya	banyaknya	
pelanggaran	pelanggaran	pelanggara	pelanggaran	pelanggara	pelanggaran	
arah lurus	arah belok kanan	n arah	arah belok	n arah lurus	arah belok	
		lurus	kanan		kanan	
14	24	40	31	73	67	
20	36	147	76	64	170	
53	44	90	67	129	169	
15	22	18	14	11	26	
37	50	144	63	243	317	
39	42	62	69	128	231	
52	65	68	46	81	209	
39	48	159	89	118	317	
79	56	103	81	139	309	
0	30	14	15	8	12	
10	14	128	86	180	205	
42	42	2	1	124	274	

Sumber: (Ridayati, Uji Beda Pelanggaran Traffic Light berdasarkan Jenis pelanggaran Lalu lintas, Jurnal Teknologi, Volume 9 Nomor 2, Desember 2016)



a. Lilliefors Significance Correction

Tests of Normality

		Kolmogorov-Smirnov ^a				Shapiro-Wilk				
	Nama Jalan	Statistic	df	Г	Sig.	S	tatistic	df		Sig.
Banyaknya pelanggaran	Ki Ageng Pandanaran	,148	1	2	,200*		,955	12	П	,704
lalu lintas	Jogja Solo sisi Timur	,133	1	2	,200*		,931	12		,392
	Jogja Solo sisi Barat	,155	1	2	,200*		,954	12		,690
*. This is a lower bound of	f the true significance.								Г	

UJI DISTRIBUSI NORMAL

UJI HOMOGENITAS VARIANS

H₀: Varians Homogen

H₁: Varians tidak homogen

UJI ONE WAY ANOVA

H₀: Tidak ada perbedaan banyaknya pelanggaran lalu lintas pada jalan yang berbeda

H₁: Ada perbedaan banyaknya pelanggaran lalu lintas pada jalan yang berbeda

UJI LANJUTAN DENGAN GAMES HOWEL

Post Hoc Tests

Multiple Comparisons

Dependent Variable: Banyaknya pelanggaran lalu lintas

Games-Howell

(I) Nama Jalan		Mean Difference (I-			95% Confidence Interval		
	(J) Nama Jalan	J)	Std. Error	Sig.	Lower Bound	Upper Bound	
Jogja Solo sisi Timur	Jogja Solo sisi Barat	-47,917	17,322	,037	-93,09	-2,75	
	4	-74,833	20,297	,007	-128,21	-21,46	
Jogja Solo sisi Barat	Jogja Solo sisi Timur	47,917	17,322	,037	2,75	93,09	
	4	-26,917	25,069	,540	-90,03	36,20	
4	Jogja Solo sisi Timur	74,833	20,297	,007	21,46	128,21	
	Jogja Solo sisi Barat	26,917	25,069	,540	-36,20	90,03	

^{*.} The mean difference is significant at the 0.05 level.

Ilustrasi 9

Seorang Kepala Kepolisian Resor (Kapolres) ingin memahami faktor-faktor yang memengaruhi persepsi keamanan masyarakat di wilayahnya. Ia menduga bahwa persepsi keamanan ini mungkin dipengaruhi oleh dua faktor utama:

Tipe Wilayah: Dibagi menjadi tiga kategori: Perkotaan, Suburban, dan Pedesaan.

Jenis Kejahatan Paling Meresahkan: Dibagi menjadi tiga kategori: Pencurian (Kejahatan Harta Benda), Narkoba (Kejahatan Terorganisir), dan Kekerasan Jalanan (Kejahatan Konvensional/Jalanan).

Kapolres ingin melihat apakah ada perbedaan signifikan dalam persepsi keamanan berdasarkan masing-masing faktor secara terpisah, dan juga apakah ada interaksi antara Tipe Wilayah dan Jenis Kejahatan Paling Meresahkan.

Two Way ANOVA

TWO WAY ANOVA

Perk	kotaan	Subu	urban
Jenis kejahatan	Persepsi Keamanan (Skala 1-10)	Jenis kejahatan	Persepsi Keamanan (Skala 1-10)
Pencurian	6	Pencurian	7
Pencurian	7	Pencurian	8
Pencurian	5	Pencurian	7
Pencurian	6	Pencurian	8
Pencurian	7	Pencurian	9
Narkoba	4	Narkoba	6
Narkoba	5	Narkoba	7
Narkoba	4	Narkoba	6
Narkoba	5	Narkoba	7
Narkoba	3	Narkoba	5
Kekerasan Jalanan	5	Kekerasan Jalanan	7
Kekerasan Jalanan	4	Kekerasan Jalanan	6
Kekerasan Jalanan	5	Kekerasan Jalanan	7
Kekerasan Jalanan	6	Kekerasan Jalanan	8
Kekerasan Jalanan	4	Kekerasan Jalanan	6

Pedesaan								
Jenis kejahatan	Persepsi Keamanan (Skala 1-10)							
Pencurian	8							
Pencurian	9							
Pencurian	8							
Pencurian	7							
Pencurian	9							
Narkoba	5							
Narkoba	6							
Narkoba	5							
Narkoba	4							
Narkoba	6							
Kekerasan Jalanan	7							
Kekerasan Jalanan	6							
Kekerasan Jalanan	7							
Kekerasan Jalanan	8							
Kekerasan Jalanan	7							

UJI DISTRIBUSI NORMAL

Tests of Normality

		Kolmogorov-Smirnov ^a				Shapiro-Wilk	
	Wilayah	Statistic	df	Sig.	Statistic	df	Sig.
Persepsi keamanan	Perkotaan	,190	15	,153	,931	15	,278
	Suburban	,208	15	,081	,932	15	,293
	Pedesaan	,154	15	,200*	,952	15	,560

^{*.} This is a lower bound of the true significance.

Tests of Normality

	Kolmogorov-Smirnov ^a				Shapiro-Wilk			
Jenis Kejahatan	Statistic	atistic df <u>Sig. Sta</u> tisti			tistic	df	Sig.	
Pencurian	,168	15		,200*		,924	15	,218
Narkoba	,169	15		,200*		,936	15	,335
Kekerasan Jalanan	,203	15		,097		,914	15	,155
	Pencurian Narkoba	Jenis Kejahatan Statistic Pencurian ,168 Narkoba ,169	Jenis Kejahatan Statistic df Pencurian ,168 15 Narkoba ,169 15	Jenis Kejahatan Statistic df Pencurian ,168 15 Narkoba ,169 15	Jenis Kejahatan Statistic df Sig. Pencurian ,168 15 ,200° Narkoba ,169 15 ,200°	Jenis Kejahatan Statistic df Sig. Statistic Pencurian ,168 15 ,200° Narkoba ,169 15 ,200°	Jenis Kejahatan Statistic df Sig. Statistic Pencurian ,168 15 ,200° ,924 Narkoba ,169 15 ,200° ,936	Jenis Kejahatan Statistic df Sig. Statistic df Pencurian ,168 15 ,200° ,924 15 Narkoba ,169 15 ,200° ,936 15

^{*.} This is a lower bound of the true significance.

a. Lilliefors Significance Correction

a. Lilliefors Significance Correction

Output Two Way ANOVA

Tests of Between-Subjects Effects

Dependent Variable: Persepsi keamanan

	Department variable. I stoope the attended									
	Source	Type III Sum of Squares	df	Mean Square	F	Sig.				
	Corrected Model	72,400 ^a	8	9,050	13,352	,000				
	Intercept	1767,200	1	1767,200	2607,344	,000				
٠	Wilayah	32,533	2	16,267	24,000	,000				
	Kejahatan	36,400	2	18,200	26,852	,000				
	Wilayah * Kejahatan	3,467	4	,867	1,279	,296				
	Error	24,400	36	,678						
	Total	1864,000	45							
	Corrected Total	96,800	44							

a. R Squared = ,748 (Adjusted R Squared = ,692)

Hipotesis:

A Hipotesis I

H₀: Tidak ada perbedaan persepsi keamanan pada wilayah yang berbeda

H₁: Ada perbedaan persepsi keamanan pada wilayah yang berbeda

B. Hipotesis II

H₀: Tidak ada perbedaan persepsi keamanan pada jenis kejahatan yang berbeda

H₁: Ada perbedaan persepsi keamanan pada jenis kejahatan yang berbeda

C. Hipotesis III

 H₀: Faktor wilayah dan perbedaan jenis kejahatan ama tidak berpengaruh terhadap Tingkat persepsi keamanan

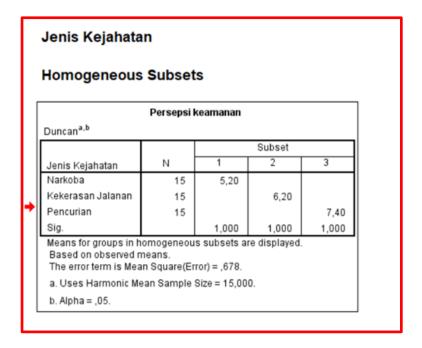
H₁: Faktor wilayah dan perbedaan jenis kejahatan ama berpengaruh terhadap Tingkat persepsi keamanan

Hasil Output Two Way ANOVA

Pvalue (>0,05)

Kesimpulan:

- 1. Ada perbedaan persepsi keamanan pada wilayah yang berbeda
- Ada perbedaan persepsi keamanan pada jenis kejahatan yang berbeda
- 3. Faktor wilayah dan perbedaan jenis kejahatan ama tidak berpengaruh terhadap Tingkat persepsi keamanan



UJI LANJUTAN DENGAN DUNCAN

Post Hoc Tests Wilayah **Homogeneous Subsets** Persepsi keamanan Duncana,b Subset Wilayah Perkotaan 15 5.07 Pedesaan 15 6.80 Suburban 15 6.93 Sig 1,000 .660 Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(Error) = ,678. a. Uses Harmonic Mean Sample Size =

Ingin di uji Manakah Wilayah yang persepsi keamanan paling rendah

Ingin di uji Manakah Jenis tindak kejahatan yang persepsi keamanan paling rendah

15,000. b. Alpha = ,05.

Contoh Penelitian Lain (Two Way ANOVA)

Pengaruh Stressor Waktu dan Kemacetan Lalu Lintas terhadap Performansi Mengemudi

(Penelitian oleh: Akbar Mohammad Syawqi(1), Rini Dharmastiti(2) (1), (2) Program Studi Teknik Industri, Jurusan Teknik Mesin dan Industri, Fakultas Teknik Universitas Gadjah Mada, Yogyakarta)

Y: Performansi mengemudi (driving speed, durasi mengemudi, top speed dan total pelanggaran)

Faktor: 4 kondisi berbeda kombinasi dari stressor time urgency dan traffic congestion.

Time stressor: Tinggi, rendah

Traffic congestion: Low dan high

Pengukuran driving performance berdasarkan hasil pengamatan terhadap video simulasi yang direkam selama responden melakukan simulasi menggunakan alat driving simulator

JANGAN MENGANGGAP TIDAK BISA SEBELUM MENCOBA DAN BELAJAR

(THOMAS ALFA EDISON)

K.E.S.I.M.P.U.L.A.N

 Penentuan Teknik Pengolahan Data berkaitan erat dengan Skala Pengukuran Data.

 Pentingnya mengenal Metode Pengolahan Data akan mempermudah Peneliti dalam Merancang Penelitian.

