

United States
Department of Energy
National Nuclear Security Administration
International Nuclear Security

M5-B: PPS Design – Detection and Access Control

Research Reactor Sabotage Protection Workshop

Learning Objectives

Objectives:

- Understand considerations for the implementation of exterior and interior intrusion detection systems
- Review examples of intrusion detection technologies
- Discuss considerations for alarm assessment

Intrusion Detection

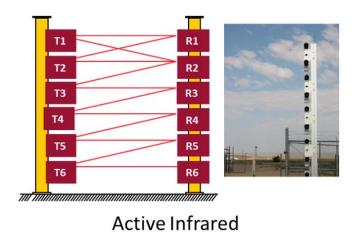
Probability of Detection

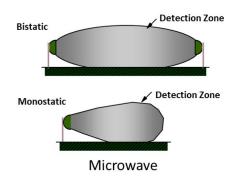
$$P_D = F(P_S, T_C, P_A, NAR)$$

- Probability of sensor alarm (P_S)
- Communication and assessment time (T_C)
- Probability of correct assessment (P_A)
- Nuisance alarm rate (NAR)

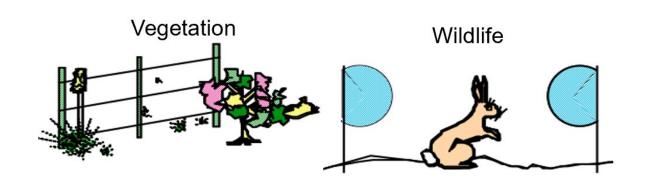
Probability of Detection (P_D)

$$P_D = P_S * P_A$$



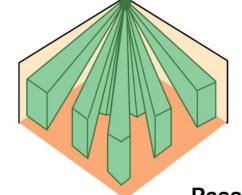

- Examples of IDS systems
 - Microwave sensors
 - Active IR sensors
 - E-field sensors
 - Fence mounted systems
 - Video analytics

Fence Disturbance



Exterior Intrusion Detection Systems (2)

- Considerations for the design and implementation of exterior IDS
 - Continuous line of detection
 - Environment
 - Sensitivity
 - Reliability
 - False and nuisance alarm rates
 - Vulnerability to defeat
 - Cost and maintenance
 - Tamper and cyber protection
 - Integration with assessment and delay
- How many lines of detection for complementary sensors?
- Performance testing



Interior Intrusion Detection Systems

- Examples of interior IDS systems
 - BMS
 - PIR
 - Microwave or dual technology
- Considerations are similar to those for exterior IDS

Assessment and Surveillance

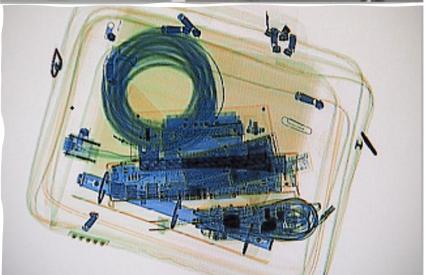
- There is no detection without assessment
- Fixed cameras are standard for alarm assessment
 - Complete coverage of the sensor zone
 - 100% of time coverage
 - Integration with the alarm communication and display system
 - Assessment is supported by pre- and post-alarm recording
 - Resolution sufficient for image classification and/or identification
- PTZ cameras are normally used for surveillance
 - Adversary tracking and situational awareness
 - Stop-and-stare detection for certain tasks

Assessment Resolution

Detection – Determine the presence of object

Appropriate lighting is required to facilitate assessment and surveillance

Categorization –
Determine nuisance or real alarms


Identification – Determine the identity of object

Access Control and Contraband Detection

- Access authorization and insider threat mitigation
- Access control
 - Technologies (e.g., card reader and biometrics)
 - Procedures (e.g., key control)
- Contraband detection
 - Vehicles searches
 - Inbound personnel and packages searches
 - What does "subject to search" mean (IAEA NSS-13)?
 - Nuclear material searches

Alarm Station

Intrusion Detection System: incorporates all exterior and interior sensors depicting them in a map display (to include extended detection).

Communications Systems: connects the CAS and SAS with all nuclear facilities and response forces

Access Control System:

incorporates all access devices for controlled areas throughout the site (to include Intercoms)

Video Management System:

incorporates all exterior and interior cameras, monitors, recording and playback equipment, including those associated with access control and nuclear material surveillance in material balance areas (to include video analytics).

CAS / SAS

CAS Operator monitors sub-systems and communicates with response forces during emergency situations facilitating command and control.

Delay System: incorporates all access delay passive and activated devices installed in material vault areas.

Secure Network and Communications: at the CAS and SAS ensures effective operations.

Uninterruptible Power Supply (UPS): provides CAS/SAS immediate, short-term back-up power during emergency situations

Back-up Power: such as a diesel generator, is connected to each CAS and SAS to maintain power for longer-term outages.

In Conclusion

- There are many mature intrusion detection and access control technologies and new technologies are being developed
- Technology selection must be considered in the context of the overall PPS
- Assessment is a critical element of detection

Questions, Comments, Concerns?

