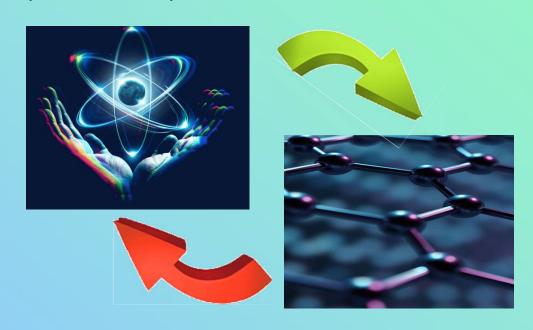
BAHAN NUKLIR

Diklat Pengurus dan Pengawas Inventori Bahan Nuklir 25 April – 15 Mei 2025


Saga Octadamailah

Pusat Riset dan Teknologi Bahan Nuklir dan Limbah Radioaktif (PTBNLR)

Pendidikan:

S1 – Teknik Nuklir UGM (2006-2010)

S2 – Teknik Metalurgi dan Material UI (2019-2021)

URAIAN MATERI

LATAR BELAKANG DAN TUJUAN

DEFINISI DAN JENIS BAHAN NUKLIR

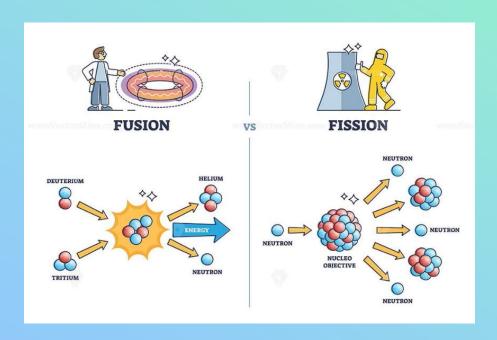
BENTUK DAN KARAKTERISTIK BAHAN NUKLIR

KESELAMATAN BAHAN NUKLIR

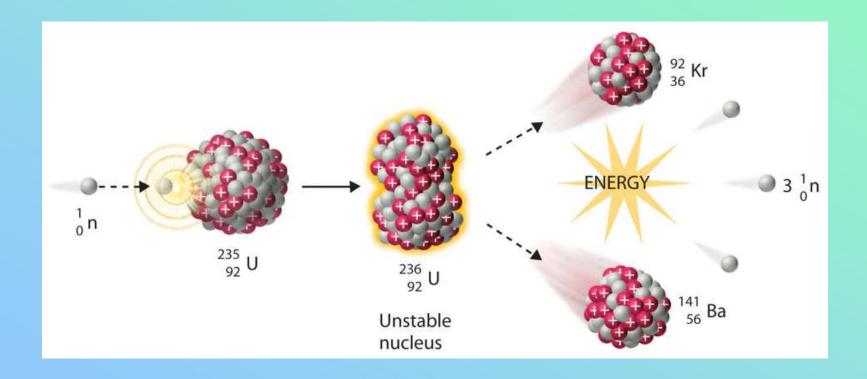
PENGEMBANGAN BAHAN BAKAR NUKLIR

KECELAKAAN NUKLIR

LATAR BELAKANG


TUJUAN PEMBELAJARAN

Peserta pelatihan dapat memahami apa itu bahan nuklir, bagaimana karakteristik dan pemanfaatannya.

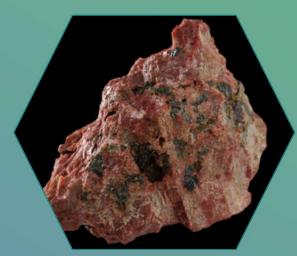

Indikator keberhasilan

- Peserta mampu menjelaskan jenis-jenis bahan nuklir
- Peserta mengetahui pemanfaatan bahan nuklir di dalam reaktor
- Memahami karakteristik teknik dan keselamatan bahan nuklir

Bahan nuklir adalah material yang dapat mengalami reaksi nuklir, seperti fisi atau fusi

REAKSI FISI

KATEGORI BAHAN NUKLIR


Fisil

Plutonium

Uranium

Thorium

URANIUM

Uranium Alam

Uranium di alam terdiri dari campuran beberapa isotop U-238 99,3%; U-235 0,7%.

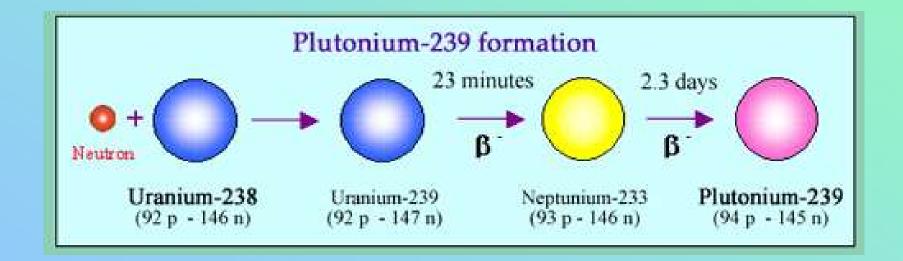
02

Low Enriched Uranium (LEU)

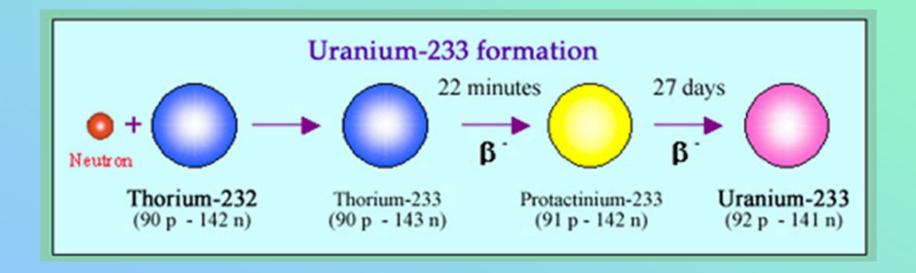
Uranium yang diperkaya Konsentrasi 0,7% < U-235 < 20%

02

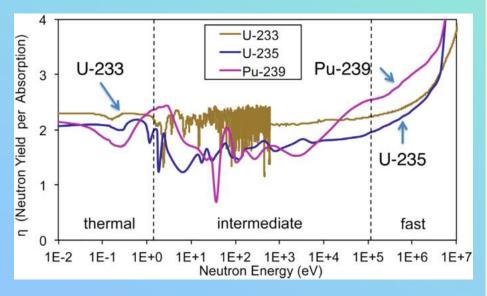
High Enriched Uranium (HEU)


Konsentrasi U-235 >= 20% Secara umum dilarang penggunaannya

02

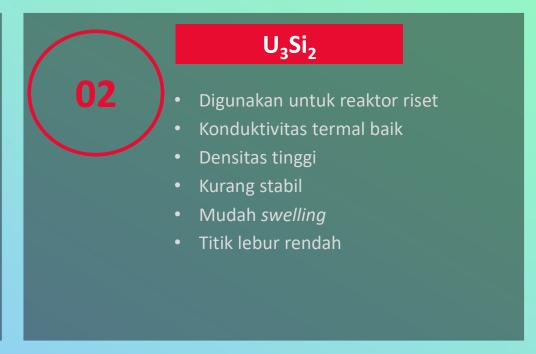

Uranium Deplesi

Hasil samping dari proses pengayaan uranium
U-235 < 0,7%


PLUTONIUM

THORIUM

KOMPARASI MATERIAL FISIL

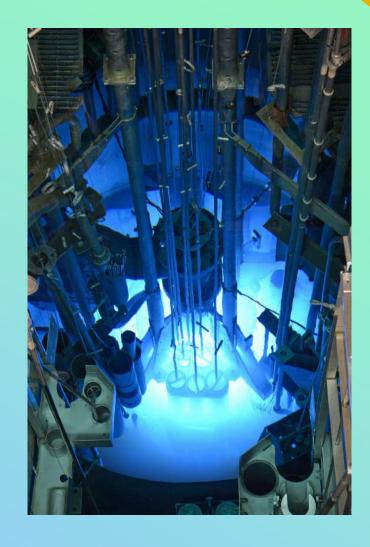


Thermal Microscopic Cross-Sections

Nuclide	Capture (σ_{v})	Fission ($\sigma_{\rm f}$)
Th-232	7.35	
U-233	45.5	529.1
U-234	99.8	
U-235	98.8	582.6
U-236	5.09	-
U-238	2.683	=
Pu-238	540	17.9
Pu-239	269.3	748.1
Pu-240	289.5	=
Pu-241	362.1	1011.1
Pu-242	18.5	
Am-241	587	3.20

SENYAWA BAHAN NUKLIR

UO₂ Digunakan untuk reaktor daya Kapasitas panas tinggi Titik lebur tinggi Stabil saat digunakan Konduktivitas termal rendah Densitas rendah



PADUAN BAHAN NUKLIR

UMo, UZr, UAlx

- Digunakan di reaktor riset
- Reaktor riset seringkali membutuhkan densitas uranium yang lebih tinggi daripada reaktor daya
- Paduan uranium memungkinkan peningkatan jumlah atom uranium per unit volume
- Hal ini meningkatkan kinerja reaktor dan mengurangi ukuran bahan bakar

Dispersi UMo-Al Monolitik UMo foil

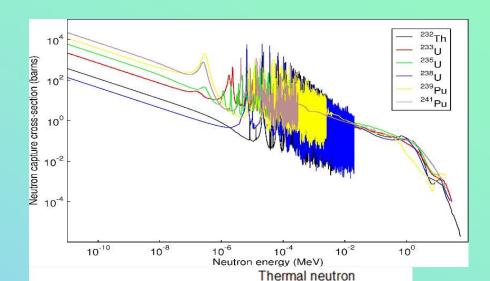
BAHAN STRUKTUR

Zircaloy, paduan Al, stainless steel

Kelongsong berfungsi untuk melindungi bahan bakar dari korosi dan menahan produk fisi keluar.

Sifat kelongsong:

- Idealnya kelongsong tidak berinteraksi dengan neutron (tampang lintang kecil)
- Memiliki konduktivitas termal yang tinggi
- Memiliki kekuatan mekanik yang baik
- Tahan korosi


MODERATOR

Moderator berfungsi untuk menurunkan energi neutron

Energi neutron hasil fisi 2 MeV -> 0,025 eV

Sifat moderator:

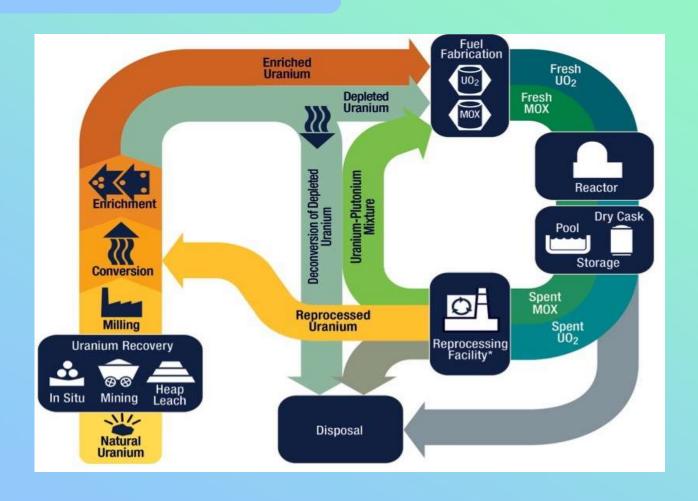
- Mempunyai tampang lintang hamburan tinggi
- Mempunyai tampang lintang serapan rendah
- Mempunyai densitas yang tinggi

		Scattering	Capture	Fission
Moderator	H-1	20	0.2	-
	H-2	4	0.0003	-
	C-12	5	0.002	-
Structural materials, others	Zr-90	5	0.006	-
	Fe-56	10	2	-
	Cr-52	3	0.5	-
	Ni-58	20	3	-
	O-16	4	0.0001	-

PENYERAP NEUTRON (ABSORBER)

Penyerap neutron berfungsi untuk menyerap neutron dan mengendalikan reaksi fisi yang terjadi di reaktor

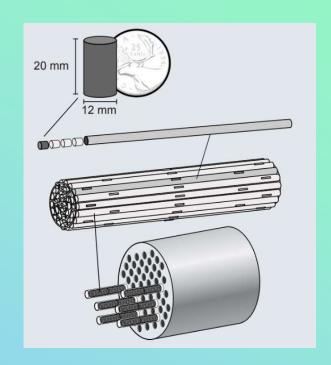
k = faktor multiplikasi Rasio jumlah neutron dari suatu siklus dengan siklus sebelumnya


k=1 (kritis), k<1 (subkritis), k>1 (superkritis)

		Thermal neutron		
		Scattering	Capture	Fission
	B-10	2	200	-
Absorber	Cd-113	100	30	-
	Xe-135	400	2,000,000	-
	In-115	2	100	-

Bentuk penyerap neutron di dalam reaktor:

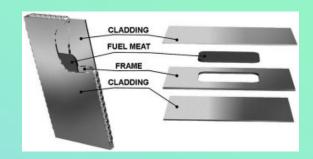
- Batang kendali
 - Beridiri sendiri
 - Mengendalikan reaksi fisi dengan cara mengubah posisi (naik turun)
- Racun dapat bakar
 - Menjadi bagian dari sistem (dicampur di dalam bahan bakar)
 - Fungsi penyerapan ikut meluruh seiring dengan pemakaian bahan bakar

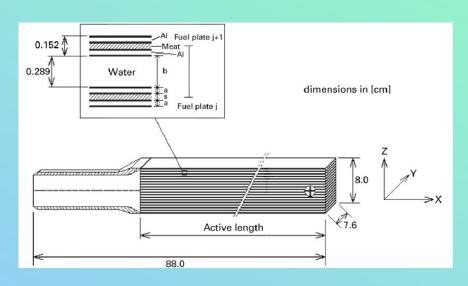

SIKLUR BAHAN BAKAR

BAHAN BAKAR REAKTOR DAYA

- Reaktor daya: PWR, BWR, CANDU
- Memanfaatkan energi yang dihasilkan dari reaksi fisi
- Menggunakan pelet UO₂
- Pengayaan PWR dan BWR ≈5%, sedangkan
 CANDU U-alam

Fungsi: menghasilkan listrik




BAHAN BAKAR REAKTOR RISET

- Reaktor riset: MTR, TRIGA
- Memanfaatkan neutron yang dihasilkan dari fisi
- Umumnya menggunakan paduan uranium (UMo, UZr)
- Pengayaan ≈20%

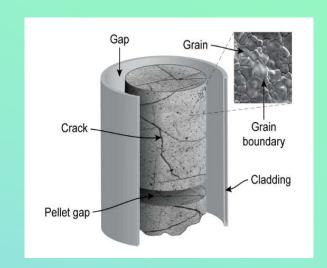
Fungsi:

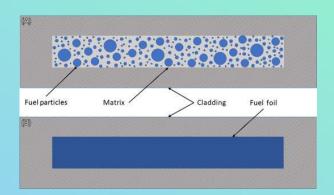
- Produksi radioisotop
- Uji bahan bakar
- Karakterisasi material

DESAIN BAHAN BAKAR

Desain Bahan Bakar meliputi:

1. Fuel meat (bagian yang mengandung bahan fisil):

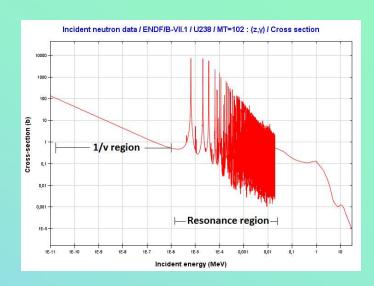

- Bagian dari bahan bakar yang mengandung isotop fisil (misalnya, U-235).
- Berbentuk pelet, plate, atau partikel.
- Komposisi dan densitasnya mempengaruhi kinerja bahan bakar.

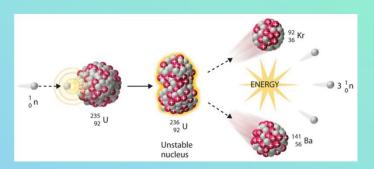

2. Cladding:

- Lapisan luar yang membungkus fuel meat.
- Berfungsi sebagai penghalang untuk mencegah korosi dan kebocoran produk fisi.
- Harus memiliki kekuatan mekanik, ketahanan korosi, dan konduktivitas termal yang baik.

3. Geometri (bentuk) bahan bakar:

- Bentuk fisik bahan bakar: silinder (pelet), pelat, atau partikel.
- Mempengaruhi luas permukaan, pendinginan, dan karakteristik neutronik.
- Desain geometri yang optimal penting untuk kinerja reaktor.




SIFAT NEUTRONIK

Tampang lintang (cross section), multiplikasi neutron.

Sifat neutronik bahan fisil sangat penting untuk desain dan operasi reaktor:

- Tampang lintang:
 - Ukuran kemungkinan interaksi antara neutron dan inti atom.
 - Penampang lintang fisi yang besar berarti kemungkinan fisi yang tinggi.
 - Penampang lintang absorpsi yang besar berarti kemungkinan penyerapan neutron yang tinggi.
- Multiplikasi neutron:
 - Jumlah neutron yang dihasilkan per fisi.
 - Harus lebih besar dari 1 untuk mempertahankan reaksi berantai.
 - Faktor multiplikasi (k) adalah rasio neutron yang dihasilkan dalam satu generasi fisi terhadap jumlah neutron dalam generasi sebelumnya.

SIFAT TERMAL

Konduktivitas, kapasitas panas.

Karakteristik termal bahan bakar mempengaruhi transfer panas dalam reaktor:

- Konduktivitas termal:
 - Kemampuan material untuk menghantarkan panas.
 - Bahan bakar dengan konduktivitas termal tinggi lebih baik dalam menghilangkan panas.
 - Penting untuk mencegah overheating dan kerusakan bahan bakar.
- Kapasitas panas:
 - Jumlah panas yang dibutuhkan untuk meningkatkan suhu material.
 - Bahan bakar dengan kapasitas panas tinggi dapat menyerap lebih banyak panas tanpa mengalami kenaikan suhu yang besar.
 - Penting untuk stabilitas termal reaktor.

KONTROL KEKRITISAN

Kekritisan terjadi ketika jumlah neutron yang dihasilkan sama dengan jumlah neutron yang hilang

Keselamatan kekritisan:

- Mendesain dan mengoperasikan fasilitas nuklir untuk mencegah kecelakaan kekritisan.
- Melibatkan pengendalian faktor-faktor seperti massa, geometri, dan komposisi bahan nuklir.

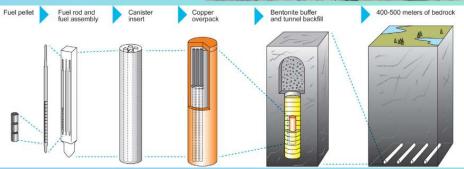
•Handling:

- Prosedur dan peralatan untuk memindahkan dan menyimpan bahan nuklir dengan aman.
- Meminimalkan risiko paparan radiasi dan kecelakaan kekritisan.

KONTROL BAHAN NUKLIR

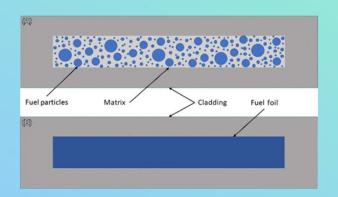
Akuntansi dan kontrol bahan nuklir sangat penting untuk mencegah proliferasi nuklir

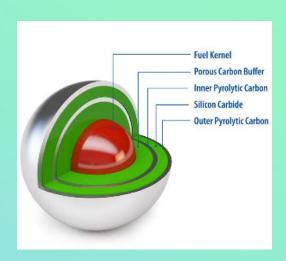
- SSAC (State System of Accounting and Control):
 - Sistem nasional yang diterapkan oleh setiap negara untuk mengawasi bahan nuklirnya.
 - Bertanggung jawab untuk melaporkan kepemilikan dan pergerakan bahan nuklir ke IAEA.
 - Di Indonesia dikenal dengan Sistem Pertanggungjawaban dan Pengendalian Bahan Nuklir (SPPBN)
- IAEA (International Atomic Energy Agency):
 - Organisasi internasional yang mempromosikan penggunaan energi nuklir secara damai.
 - Memverifikasi bahwa negara-negara mematuhi kewajiban nonproliferasi mereka.
 - · Melakukan inspeksi dan pemantauan di fasilitas nuklir di seluruh dunia.


PENYIMPANAN BAHAN BAKAR BEKAS

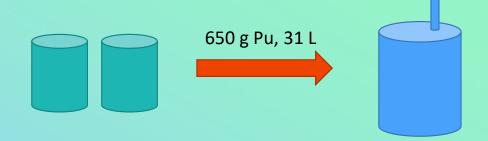
Penyimpanan Sementara dan Akhir

- Penyimpanan sementara:
 - Kolam bahan bakar bekas:
 - Kolam berisi air yang digunakan untuk mendinginkan dan melindungi bahan bakar bekas.
 - · Biasanya terletak di lokasi reaktor.
 - Dry storage (penyimpanan kering):
 - Menyimpan bahan bakar bekas dalam wadah yang disegel di udara terbuka atau di dalam ruangan.
 - · Mengandalkan pendinginan udara alami.
- •Penyimpanan akhir (disposal):
 - Penyimpanan permanen bahan bakar bekas di fasilitas geologis yang dalam.
 - Membutuhkan pemilihan lokasi yang cermat dan desain fasilitas yang kuat.




PENGEMBANGAN BAHAN BAKAR

Accident Tolerance Fuel (ATF)


Densitas Tinggi

TRISO

STUDI KASUS: KECELAKAAN INNR

Fasilitas produksi plutonium hasil iradiasi uranium

Melibatkan 2 pekerja radiasi, 1 orang sebagai kepala operator, 1 orang lainnya sebagai operator pembantu Pada saat kejadian tidak terjadi dampak langsung, namun sejak kejadian tersebut kepala operator mengalami sindrom radiasi akut

2 hari kemudian pekerja tersebut dilakukan pengecekan radiasi. Kepala operator menerima dosis radiasi sebesar 1000 rad, dan operator pembantu menerima dosis sebesar 100 rad.

STUDI KASUS: KECELAKAAN REAKTOR

- Berawal dari uji coba keselamatan, berujung tidak selamat karena ketidaktahuan karakteristik reaktor.
- Kegiatan eksperimen ingin melihat bagaimana kinerja pompa pendingin pada saat mati listrik.
- Untuk menyimulasikan mati listrik, maka reaktor dishutdown.
 Bukan di shutdown biasa, melainkan SCRAM.
- Pada saat dishutdown, reaktor masih bisa menghasilkan panas (hasil panas peluruhan).
- Panas menghasilkan steam, steam menggerakkan turbin dan menghasilkan listrik. Listrik tersebut digunakan untuk suplai pompa pendingin.
- Setelah selesai eksperimen, reaktor mau dioperasikan kembali.
- Batang kendali diangkat, namun reaktor tidak kunjung juga menyala.
- Tiba-tiba terjadi lonjakan daya drastis, temperatur naik signifikan.
- Terjadi tekanan uap yang sangat tinggi sehingga reaktor meledak

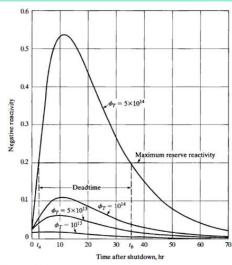


Figure 7.14 Xenon-135 buildup after shutdown for several values of the operating flux before shutdown.

REVIEW SINGKAT

Dalam kaitannya dengan 3S (Safety, Security, Safeguard), pemahaman tentang bahan nuklir sangat penting

Definisi	Reaksi Fisi	Senyawa	Paduan
LEU, HEU	Fisil, Sumber	Siklus BB	Termal
Neutronik	BBRD	BBRR	Kekritisan

