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History of Neural Network Model

First Boom
1958~  Perceptron by Rosenblatt
    2 layers (Input and Output)
   Perceptron can only solve linearly separable problems
Second Boom
1986~  Multi Layer Perceptron with Backpropagation Learning
   Algorithm by Rumelhart and Hinton
   Problem of Overfitting and Vanishing Gradient
Third and Fourth(?) Boom
2006~   Deep Learning (more than 4 layers) by Hinton, et al.
   Dropout, ReLU (rectified linear unit)
2017~   Generative AI* (Transformer)
   ChatDPT(OpenAI), Gemini(Google), Copilot(Microsoft)
             * AI requires a lot of electricity. 3



Neural Network Model

Sum of Input ≥ θ  … Output=1
Sum of Input < θ  … Output=0
 

 θ : Threshold Level

y

x
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100~200 Billion Neurons in Brain

Connection is important!Simple Behavior



Neural Network Model
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Learning: Optimization of weight (w) and threshold level (θ)
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(m-1)Layer (m)Layer (m+1)Layer

𝑰𝑰𝒋𝒋𝒎𝒎

𝑶𝑶𝒋𝒋
𝒎𝒎

𝑾𝑾𝒊𝒊,𝒋𝒋
𝒎𝒎−𝟏𝟏,𝒎𝒎

𝒇𝒇 : Activation Function

: Output of (m)Layer(j)th neuron

: Sum of Input of (m)Layer (j)th neuron

: Weight from (m-1)Layer (i)th 
neuron to (k)Layer (j)th neuron                
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𝜽𝜽𝒋𝒋𝒎𝒎 : Threshold Level of (m)Layer (j)th neuron

(j)th neuron



Backpropagation Learning Algorithm

𝑊𝑊𝑖𝑖,𝑗𝑗
𝑚𝑚−1,𝑚𝑚(𝑡𝑡) = 𝑊𝑊𝑖𝑖,𝑗𝑗

𝑚𝑚−1,𝑚𝑚(𝑡𝑡 − 1) + Δ𝑊𝑊𝑖𝑖,𝑗𝑗
𝑚𝑚−1,𝑚𝑚(𝑡𝑡)

Δ𝑊𝑊𝑖𝑖,𝑗𝑗
𝑚𝑚−1,𝑚𝑚(𝑡𝑡) = 𝜼𝜼 ⋅ 𝛿𝛿𝑗𝑗𝑚𝑚 ⋅ 𝑂𝑂𝑖𝑖𝑚𝑚−1 + 𝜶𝜶 ⋅ Δ𝑊𝑊𝑖𝑖,𝑗𝑗

𝑚𝑚−1,𝑚𝑚(𝑡𝑡 − 1)

𝛿𝛿𝑗𝑗𝑀𝑀 = (𝑌𝑌𝑗𝑗 − 𝑂𝑂𝑗𝑗𝑀𝑀) ⋅ 𝑓𝑓′(𝐼𝐼𝑗𝑗𝑀𝑀) = 𝑂𝑂𝑗𝑗𝑀𝑀 ⋅ (1 − 𝑂𝑂𝑗𝑗𝑀𝑀) ⋅ (𝑌𝑌𝑗𝑗 − 𝑂𝑂𝑗𝑗𝑀𝑀)

𝛿𝛿𝑗𝑗𝑚𝑚 = 𝑓𝑓′(𝐼𝐼𝑗𝑗𝑚𝑚) ⋅�
𝑚𝑚

𝑊𝑊𝑗𝑗,𝑘𝑘
𝑚𝑚,𝑚𝑚+1 ⋅ 𝛿𝛿𝑘𝑘𝑚𝑚+1 = 𝑂𝑂𝑗𝑗𝑚𝑚 ⋅ (1 − 𝑂𝑂𝑗𝑗𝑚𝑚) ⋅�

𝑝𝑝

𝑊𝑊𝑗𝑗,𝑘𝑘
𝑚𝑚,𝑚𝑚+1 ⋅ 𝛿𝛿𝑘𝑘𝑚𝑚+1 (𝑚𝑚 = 𝑀𝑀 − 1, . . . 2)

Error at Output Layer (M)

Error at Hidden Layer (m)

η : Learning rate
: Error at (m)Layer (j)th neuron 

𝜶𝜶 : Coefficient of Momentum term

∆𝜃𝜃𝑗𝑗𝑚𝑚 𝑡𝑡 = η∙𝛿𝛿𝑗𝑗𝑚𝑚 � 𝜃𝜃𝑗𝑗𝑚𝑚 + 𝛼𝛼 � ∆𝜃𝜃𝑗𝑗𝑚𝑚 𝑡𝑡 − 1
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Modification of weight and threshold level at (t) learning cycle

𝛿𝛿𝑗𝑗𝑚𝑚

Sigmoid Function
𝒇𝒇(𝒙𝒙) =

𝟏𝟏
𝟏𝟏 + 𝒆𝒆−𝒙𝒙



Backpropagation Learning Algorithm
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Error at Output Layer (M)

Error at Hidden Layer (m)
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Sigmoid Function
𝒇𝒇(𝒙𝒙) =

𝟏𝟏
𝟏𝟏 + 𝒆𝒆−𝒙𝒙

Input Data

Input Data

Input Data

Input Data

Input Layer Hidden Layers

Output Layer

Output Data

w: weight
ww

: Correct Value

𝑶𝑶𝒋𝒋
M

𝑌𝑌𝑗𝑗

: Output
w

w

w



Recent trends in Deep Learning

Overfitting: Training data can be predicted correctly, but the 
error in test data is larger.
Vanishing Gradient : As the number of layers increases, 
early layers receive little or no updated weight information 
during backpropagation, and the learning speed slows down.

Disadvantages of Backpropagation Algorithm

9

 Dropout:
Some nodes are disabling during learning

 ReLU (Rectified Linear Unit) function
is selected as activation function.
f(x)=0, if x<0
f(x)=x, if x≥0

Solution



Recent situation in Deep Learning
 Accelerating computer: Improving the performance of not 

only CPU but also GPU in particular.
 increased HDD capacity : Big data can be stored and 

processed.
 A lot of free Scientific Libraries and Tools by Python-

Anaconda

 Build a large network (a lot of inputs, outputs and layers)
 Accelerate learning speed
 Easy programing
 Create a lot of simulation data for learning and testing
 Store a lot of learning and testing data

10



Typical Deep Learning Networks
① Convolutional neural network (CNN) : A feature vector is 

extracted from an image in image processing. It is a 
dimension deleter and is good at image recognition.

② Autoencoder : It does not process complicated information 
as it is. It abstracts the data to reduce the amount of data, 
so large-scale learning is possible.

③ LSTM (Long Short Term Memory) : It is good for time 
series data and language processing. ( a kind of RNN )

④ GAN (Generative Adversarial Network) : It is a hostile 
generation network of unsupervised learning that creates 
models (images) by reverse coupling of autoencoders. It 
consists of two networks, a generator and a classifier.

⑤ Transformer : It is useful for sequential data or natural 
language processing. Most of generative AI use this type.

Basic learning algorithm is back propagation
11



Use deep learning as a tool
• PyTorch developed by FB (Meta)
• TensorFlow developed by Google
• MATLAB  Deep Learning Toolbox

Deep Learning has made any modeling possible, 
but “Why these learning models work so well?”

Elucidate learning model
• Structure of Brain
• Philosophy?

12

Input Data

Input Data

Input Data

Input Data

Input Layer Hidden Layers

Output Layer

Output Data

w: weight
ww

Some Scientists Other Scientists



Monitoring methods of ambient dose equivalents
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Carborne surveyWalk surveyUnmanned Aerial Vehicle (UAV)Manned helicopter

Heli UAV Walk Car

Mobility ◎ 〇 × △
Accuracy × △ ◎ 〇

Cost △ 〇 〇 〇

Application 1: Application of the artificial neural 
network (ANN) to the airborne radiation survey



Dose rate mapping 1 m above the ground level around 
Fukushima Daiichi NPS by airborne radiation survey

The unevenness of the terrain Shielding effect (trees, etc.) Local distribution of source

In the conventional method, the reenactment of 
air dose rate is not well at the area which 
deviates from the hypothetical conditions.

Inverse problem analysis
• long calculation time
• much time for creating parameters work

14
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Enlarged view

PhotogrammetryLaser surveying

Advances are being made in UAV-based 
ground surveying technology.

Walking survey
(Backpack survey)
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Output data
Outputs the air dose rate 
at 1m above the ground 
level (estimated value) at 
the measurement point. 

Correct answer value
Air dose rate by ground measurement at
the measurement point (measured value).

Artificial neural 
network

Objective variable

Input variables

com
parison

Parameter
update Ground-based survey data

（air dose rate: μSv h−1）

• Measurement altitude
• Photo color data
   （RGB：0-255）
• Topography data
（DSM-DEM）

https://doi.org/10.1038/s41598-021-81546-4

Image of Applying ANN

• Radiation count rate（4 type）

(< 150 m)

(1 m)
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Flow of the network construction 

• The network is constructed 
by cascade correlation. 

• The weight update method 
used is the adaptive sub-
gradient method. 

• The objective function is 
cross-entropy with added 
ridge regression.

• “NeuralWorks Predict” 
(commercially available 
software) is used for this 
application.

INPUT
P1-P4: Count rate of γ-ray spectral data divided by energy
P5:  Distance from ground surface to helicopter position

OUTPUT:
 Air dose rate at ground level

https://doi.org/10.1038/s41598-021-81546-4
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Typical gamma-ray spectrum of a UAV* spectrometer with a LaBr3 (Ce) 
sensor. (This spectrum was obtained at 50 m agl. around FDNPS.)

https://doi.org/10.1038/s41598-021-81546-4

*UAV:
Unmanned 
Aerial Vehicle
(drone)

agl:
Above the 
ground 
level

FDNPS:
Fukushima
Daiichi 
Nuclear 
Power 
Station
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Comparison of the ground-based survey values and the 
ANN conversion values for the number of training cases

(a) scatter diagrams of the ground-based
      survey value and the ANN value

(b) histograms of the RD for each
      number of training cases

https://doi.org/10.1038/s41598-021-81546-4



ANNConventional method

Air dose rate (µSv h-1)
6.0      5.0       4.0      3.0       2.0      1.0

Ground-based survey

20

Dose rate maps using machine learning
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Air dose rate maps at 1 m above the ground level (agl.) by 
ArcGIS* * https://www.esri.com/ja-jp/arcgis/about-arcgis/overview

https://doi.org/10.1038/s41598-021-81546-4

(a) ground-based survey (b) UAV-survey using the FSM 
        (Conventional Method: Flat Surface Model)

(c) UAV-survey using the ML-EM
(Inverse Problem Solution)

(d) UAV-survey using the ANN
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Comparison of the ground-based survey values 
and the three types of converted values

https://www.nature.com/articles/s41598-021-81546-4

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉



• Difficult to  detect cracks of core support structure 
in fast reactor

• Sodium is chemically active and invisible
• It is difficult to extract sodium in the reactor vessel for 

inspection

• Difficult to detect from
• Outside of Reactor Vessel
• Long Distance

   because of large “noise”

Ultrasonic Testing

Deep Learning 
(CNN: AlexNet) 

Phased Array 
23

Application 2: Ultrasonic Testing in Fast Reactor



Images Data by Phased Array
• Actual length of core support structure is 1.1 m

• Ultrasonic waves are attenuated
• We attempted to classify whether welding defects exist or 

not using small scale specimens (0.35 m)

with welding defect no welding defect

0.35 m

Welding 
defect

54 images 54 images

24

Probe



Transfer Learning for 0.35 m Specimens
• Prerequisite for transfer learning

• 108 (54 images with and without welding defect) images are prepared
• 70% (76 images) for training, 30% (32 images) for validating
• initial learn rate1.0×10-5, epoch size40, minibatch size10
• AlexNet is applied as pre-trained network

• There is no misclassification
• Criteria for classification is unknown  Explainable AI

16 0

0 16
exist not

ex
is

t
no

t

true

pr
ed

ic
tio

n

25Y. OTA, et al., “Explainable Machine Learning to Identify Flaws in Supporting Structures of Fast Reactor”, 
NTHAS 13 (2024)



Transfer Learning, LIME Method

• Machine Learning enables us to determine whether 
welding defect exist in unknown data automatically

• Transfer learning uses pre-train network (Alexnet 
etc.) and re-training for particular classification

Disadvantage
Unclearness of criteria

Explainable AI

26

LIME method enable us 
to visualize the criteria 
for classification by 
hiding part of images



Criteria of classification for 0.35 m specimens

• Prerequisite for LIME method
• The number of hyperparameter  50,  Hide ratio  40%

• LIME method is applied to phased array images 
individually  Overlap the results

• The bottom of the images are essential location for 
classification  Criteria is correct

with welding defect no welding defect

important area

importance

27



Measured Signal Anomaly
Detect

Anomaly
Detect

Anomaly
Detect

Measured
Signal

Time Time

Conventional Alarm system

Pr
oc

es
s 

Si
gn

al

Pr
oc

es
s 

Si
gn

al

Normal
Range

Fault
Severity

Level

Estimated Value

Anomaly Occurs Detect Anomaly 
Occurs

Detect

Model-Based by neural 
network

• Modeling of correlation among 
main process signals

• Monitoring difference between  
measured signal and estimated 
value

• Wide normal range
• Long time to detect anomalies

Application 3: Reactor monitoring



• SIMULATOR
Surry-1 (USA), PWR   
822MWe,    3-Loops

• NETWORK TYPE 
Recurrent Neural Network
with Adaptive Learning

• INPUT&OUTPUT
Main Plant Signals: 22 Ch

• LEARNING DATA
Normal Operation Data
(Transient and Steady 
State Operation) 

Case3-1: Feedforward and Recurrent Neural Network
~ Application to PWR simulator ~

29K. Nabeshima, et.al, “Nuclear Power Plant Monitoring with Recurrent Neural Network”, 
J. Knowledge-based Intelligent Engineering System 4[4] (2000)



Schematic Representation of PWR Simulator
 (Surry-1)    * A loop is also modeled, but not on the display. 30



Monitoring signals ( 22 important signals)

Ch. Signal Maximum Error Ch. Signal Maximum Error

1 Ex-core Neutron Flux -A 0.38848 [%] 12 Steam Flow (loop-C) 2.94088 [t/h]

2 Ex-core Neutron Flux -C 0.37494 [%] 13 Feedwater Flow (loop-B) 3.12966 [t/h]

3 Ex-core Neutron Flux -B 0.37883 [%] 14 Feedwater Flow (loop-C) 2.71875 [t/h]

4 Ex-core Neutron Flux -D 0.38532 [%] 15 Main Steam Header Pressure 0.09717 [kgf/cm2]

5 Average Coolant Temp. 0.11759 [oC] 16 Feedwater Pressure 0.07543 [kgf/cm2]

6 Pressurizer Pressure 0.17125 [kgf/cm2] 17 Hot-leg Temperature (loop-B) 0.10824 [oC]

7 VCT (Vol. Cont. Tank) Level 0.38583 [%] 18 Hot-leg Temperature (loop-C) 0.19781 [oC]

8 Turbine Impulse Pressure 0.13519 [kgf/cm2] 19 Steam Pressure (loop-B) 0.07070 [kgf/cm2]

9 Steam Generator Level (B) 0.09953 [%] 20 Steam Pressure (loop-C) 0.07122 [kgf/cm2]

10 Steam Generator Level (C) 0.08940 [%] 21 Average Neutron Flux 0.58640 [%]

11 Steam Flow (loop-B) 2.82109 [t/h] 22 Generated Electric Power 2.31500 [MWe]



Anomaly Detection by Auto-associative Neural Network

INPUT
X(t)

OUTPUT
X’(t)

INPUT
X(t)

OUTPUT
X’(t)

Normal
Operation

INPUT
X(t)

OUTPUT
X’(t)Abnormal

= X(t)

≈X(t)

≠X(t)

Learning

Testing

Normal
Operation

32

Modeling of the correlation among plant signals 
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“Small Reactor Coolant System Leak” (56.7 l/min)
during power decrease operation 

(Turbine: -2.0%/min) 

Ch.6 (Pressurizer Pressure)



Fault Detection Channels for Leakage

No. Malfunction
Detection Channel No. Ch. No. 

Without 
Alarm

Conventional 
AlarmFirst Second Third 

1 Small Reactor Coolant System 
Leak (Large:56.7 l/min)

Ch.6  
(0:18)

Ch.16 
(2:26)

Ch.8,22 
(3:32) Ch.9 No Alarm

2 Small Reactor Coolant System 
Leak (Small:11.4 l /min)

Ch.8,22 
(3:08)

Ch.2 
(3:31)

Ch.4 
(3:37) Ch.9 No Alarm

3 Leakage of Atmospheric Steam 
Dump Valve (Large:5%)

Ch.11,1
2 (0:02)

Ch.13,14 
(0:04)

Ch.2,4 
(0:06)

Ch.5,9,10, 
17,18 No Alarm

4 Leakage of Atmospheric Steam 
Dump Valve (Small:1%)

Ch.8,22 
(7:47)

Ch.10 
(8:11)

Ch.2,3,4 
(8:13)

Ch.5,9,10, 
17,18 No Alarm

5 Partial Loss of Feedwater 
(Large:90.7 ton/hr)

Ch.16 
(0:04)

Ch.13,14 
(0:10)

Ch.2,3 
(0:32)

Ch.5,6,9,1
0, 

13,17,18
No Alarm

6 Partial Loss of Feedwater 
(Small:9.07 ton/hr)

Ch.8,22 
(3:53)

Ch.10 
(4:15) no

Ch.5,6,9,1
0, 

13,17,18
No Alarm

 Anomaly Detection during steady state or transient 
operation is not difficult for Deep Learning.

 Anomaly Identification is difficult. 34



• Electric Power : 
470 MWe

• Coolant Loop   : 
2 Loop

• Steam Generator : 
2

Case 3-2: Feedforward Neural Network with Adaptive 
Learning  ~ Real-time Application to PWR Plant ~

Borssele NPP (The Netherlands)

Conventional Method:
  Off-line Fault Detection  
  by Noise Analysis

35K. Nabeshima, et.al, “Real-Time Power plant Monitoring with Neural Network”, 
J. Nucl. Sci. Technol. 35[2] (1998)



Overview and Signals of Borssele NPP

Rinsing Operation* 
at Last Shutdown

Dynamics of Loop-1 
and Loop-2 was 
reversed

* Rinsing : 
Operation mode for 
cleaning Condenser

Reverse Phase Rinsing Operation

Anomaly Detection 
at Secondary Loop-2

36

Loop-2



Case 2 : Real-time Anomaly Detection During Last Shutdown

Steam Pressure Signal (Loop-1)

Generated Electric Power Signal
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Steam Pressure Signal (Loop-2)
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Anomaly Occurs
(1) Detect (3) Countermeasure

With Countermeasure

Without Countermeasure

Normal 
RangePr

oc
es

s 
Si

gn
al

Effectiveness of 
Countermeasure

(2) Identification
Skip

①Anomaly Detection by Deep Learning
② Identification (Place, Cause)   SKIP
③Countermeasure Selected by Reinforcement Learning

α=1100 β=2000 γ=100000 t

Case 3-3: Reactor Monitoring for Operator Support  
                 ~ Application to HTGR ~

1000



High Temperature Engineering Test Reactor 
(HTTR) in JAEA 

39

Thermal Power: 30 MW
Coolant:    Helium Gas
Outlet Temp. : 950 oC
Inlet Temp. :   395 oC 
Core Material: Graphite
Pressure:   4MPa

1998 : First criticality
2001 : Full power operation
2010 : 50 days continuous 950oC Operation
2010 : Loss of core flow test at 9MW
(Great East Japan Earthquake : 2011)
2021 : Restart
2022 : Loss of core cooling test at 9MW
2024 : Loss of core cooling test at 30MW



Reactor Cooling System of HTTR in JAEA 

40

Abnormal situation data is created by ACCORD: 
Plant dynamic analysis code for high temperature gas-
cooled reactors 



Name of disturbance and their value range

41

Components used for countermeasures



Schematic diagram of Counter-Measure Proposal 
Module (CMPM)

42

S. Takaya, A. Seki, M. Yoshikawa, N. Sasaki and X. Yan, “Proposal of a novel AI-based plant operator support 
system for the safety of nuclear power plants”, Mechanical Engineering Journal, Vol.11, No.2 (2024)
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AI surrogate models of ACCORD:
 Feedforward fully-connected neural network
 Hidden layers: 3
 Number of nodes in each layer: 100
 Activation function: leaky ReLU
 Training Data: 3200 cases

CMPM (Counter-Measure Proposal Module):
 Deep reinforcement learning algorithms: Proximal policy 

optimization (PPO)
 Reward function: -∑𝑖𝑖=12 �𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖

∆𝑥𝑥𝑖𝑖
    �𝑥𝑥𝑖𝑖  : value during normal operation
    i=1: reactor power 
    i=2: reactor outlet temperature



Comparisons between true and predicted 
rotation speed of primary gas circulators

44



Comparison of distributions of plant parameters 
with and without countermeasures (1000 cases)

45



What is most important for Deep Learning?

46

Selection of important input signals for appropriate 

modeling 

Preprocessing of input signals 

(ex. stochastic parameters)

Type of network

Number of layers

Number of unit in layers

Learning parameters



Thank you for your attention!
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