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 One-energy-group neutron diffusion equation
Critical and steady-state reactor :

Time-dependent case (which is not critical) :

The reactor kinetics equation, that has a simple structure, is derived from the 
diffusion equation. And the analysis of time dependent reactor is usually 
carried out by solving this kinetics equation.

For the time-dependent behavior of reactor, we can analyze it by directly 
solving the time-dependent diffusion equation. But it needs so much costs.
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The reactor kinetics is the characteristics of  time-dependent behavior of 
neutrons in the reactor and it is one of the areas in the reactor physics.
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Neutron production rate

Neutron loss rate by 
absorption or leakage

 Effective multiplication factor

=effk (3)
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Number of
neutrons N

Time elapsed

effk<1

1=effk

1<effk

N0

Super criticality
The number of neutron increases.

Sub criticality
The number of neutron decreases.

(with an exception)

Criticality
The number of neutron is constant.

Neutron production rate by fission

Neutron production rate by fission 
in previous generation

=

All the neutrons produced are finally lost 
(by absorption or leakage)



eff

eff

k
k 1−

≡ρ ( )

The value of reactivity(or reactivity worth) is usually small, so many 
kinds of unit are used.

pcm 10-5

dollar
cent

(will be discussed  later)

 Reactivity

Relative deviation of keff from unity
More useful for use in the reactor kinetics than keff

super criticality

sub criticality

criticality0=ρ

0>ρ

0<ρ

0012.1=effk

(4)

Example) 

ρ = 0.12 ( % )  or  120 ( pcm )

The reactor power is usually increased by adjusting the control rod with 
the keff being close to unity.

kk /∆

kk /∆

Reactivity worth : difference of reactivity 12 ρρρ −=∆
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kk /∆



• The neutron number ∝ the fission rate ∝ the reactor power

• When the neutron number increases by a factor of 2, the reactor power 
increases by the same factor.  

• This change is caused by a reactivity change introduced into a steady-
state operating critical reactor.

• The reactivity changes are of two types : long-term and short-term.

• The long-term (months to years) changes are due to such effects as 
fuel depletion(consumption).

• The short-term (seconds to hours) changes are caused by control rod 
motions, reactor temperature change, etc.

• The short-term time-dependent behavior is generally classed as the 
reactor kinetics and that is the subject which we learn in this lecture.
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1. Derivation of reactor 
kinetics equation 

1.1



Prompt and delayed neutrons

2～3 neutrons are usually emitted promptly
at the fission. (mean number about 2.4 per 
fission for the 235U)

 Prompt neutron (PN)

 Delayed neutron (DN)
Average energy at emission is about 2 [MeV].

Small number of neutrons are emitted with decay of 
some of fission products long after the fission.
(mean number about 1.6 per 100 fissions for the 235U)

DN fraction     
Nbr. of PNs + DNs

Nbr. of DNs 

Average energy at the emission is about 0.5 [MeV].

(Ex. 0.65% for the 235U)
Although the fraction of DNs is small, their delay in the emission 
has a great impact on the reactor kinetics.

(1)
≡β

PN fraction 
β−=1

1.2

Both of PNs and DNs contribute to maintain 
the chain reaction during normal operation of 
reactor.

PNs
fission

ray
（ decay）

DN

Incident
neutron

235U

fission product

fission product

β
β



 Process of DN emission

87Br

87Kr(excited)

87Kr
(ground)

τ ~ 80 [s]

86Kr

Emit a neutron 
almost promptly

The life τ of 87Br (80 [s]) 
practically determines the delay
of the DN emission.

A fission product like the 87Br.
It is known that about 50 
fission products play as the 
precursor.

Delayed neutron precursor

One of fission products

Many kinds of fission products have been found.
Most of them is unstable (“neutron rich”) and decays, emitting     rays.
Some of them also decays, emitting a neutron.

Example)

Delayed neutron (1/3)

β

−β
−β

1.3

life τ = half life / 0.693



It is impractical to treat 50 kinds of the precursors "directly" in the 
reactor kinetics.

Six-DN-group model is generally adopted.

Table 1  Principal DN precursors classed into six groups

Each group is composed 
of precursors that have a 
similar half-lives.

 Six-DN-group data
Delayed neutron (2/3) 1.4

Source of data in table :
G.R Keepin, “Physics of Nuclear 
Kinetics” Addison-Wesley 
publishing
Company Inc.
(modified for present talk)

Principal precursors Life [s] Group
87Br 80 1
137I
88Br

35.5
23.5

2

138I
(89)Br
(93,94)Rb

9.1
6.3
~ 9

3

139I
(Cs, Sb, Te)
(90,92)Br
(93)Kr

3
(2.3 --- 3.5)
2.3
~ 2.2

4

(140I, Kr) 0.7 5
(Br, Rb, As, …) 0.3 6



Group i Mean-life τi [s] Decay const.  λi [s-1] DN fraction  βi

1 80.65 0.0124 0.000215
2 32.79 0.0305 0.001424
3 9.01 0.111 0.001274
4 3.32 0.301 0.002568
5 0.88 1.14 0.000748
6 0.33 3.01 0.000273

Mean 13.04 Mean 0.0767 Sum  β =0.0065

Table 2 Six-DN-group precursor data of 235U fission with thermal neutron

（A contribution from 87Br is dominant in the 1st. group.）

Delayed neutron (3/3) 1.5

∑
=

=
6

1

1

i
ii τβ

βτ
τ

λ 1
=

Mean of six-group parameters :

Source of data in table : G.R Keepin, “Physics of Nuclear Kinetics” Addison-Wesley 
publishing Company Inc., 

(2) (3)

One-DN-group 
approximation



We consider the increase or decrease of total number of neutrons          at t
in the reactor by using the neutron lifetime l.

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −
𝑁𝑁(𝑡𝑡)
𝑙𝑙

+
𝑁𝑁(𝑡𝑡)
𝑙𝑙

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 − 1

𝑙𝑙
𝑁𝑁(𝑡𝑡)

Neutron 
number 
change rate

Neutron 
loss rate

Neutron 
production 
rate

τ
λ )()()( tntn

td
tnd

−=−=

Similar to the decay of "radioactive nuclide"

Nuclide 
number 
change rate 

is the decay 
const.

is 
the life.

A kind of the 
reactor kinetics 
equation 

Production rate
= loss rate x keff

Neutron multiplication with "mean" lifetime (1/3)

λ λτ 1=

)(tN

1.9

(6)

Production rate
Loss rate

keff =



𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

=
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 − 1

𝑙𝑙
𝑁𝑁(𝑡𝑡)

𝑇𝑇 ≡
𝑙𝑙

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 − 1

Initial number 
of neutrons

𝑁𝑁(𝑡𝑡) = 𝑁𝑁(0) exp
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 − 1

𝑙𝑙
𝑡𝑡 = 𝑁𝑁(0) exp

𝑡𝑡
𝑇𝑇

T is called the reactor period. 
In time T, the neutrons either increases or decreases by the factor e (~2.72).

effk<1

1<effk

T<0

0<T

1=effk ∞=T

Number of 
neutrons

Time

Super criticality

Sub criticality

Criticality

0

)0(N

1.10

(6) (7)

Neutron multiplication ... (2/3)

(8)



1.0
001.0
101

1

4
=

×
=

−
=

−

effk
lT

• In one second, the reactor pass through 10 periods and power 
increases by a factor of e10 = 2.2 x 104.  

• When the reactor is initially operating at 1 [MW], the power increases to 
22,000 [MW] in only one second, if no power feedback arises. 

• A reactor with such a short period would be very difficult to control.

If the DN does not exist, the (real) neutron lifetime l = 100 [μs] is used 
for the reactor period calculation :

1.12Neutron multiplication ... (3/3)

[s]

Demonstrates the importance of DN in the reactor kinetics and control.

• So far, we have considered the delay of DN emission roughly and 
“implicitly" by using the "pseudo-lifetime of DN  ld ". 

• For more detailed analysis, we treat the decay of precursor "explicitly", in 
the following pages. 



 Consider not only the number of 
neutrons N(t), but also fictitious
number of precursors C(t) so that 
one DN precursor emits one DN.

effk
l
tN

l
tN

td
tNd )()()(

+−=

Derivation of reactor kinetics equations (1/6)

 Introduce the time delay of DN 
emission "explicitly" to the 
previously derived neutron 
multiplication equation :

Loss rate Production rate

1.13

 The kinetics equation is rigorously derived from the time-dependent 
neutron diffusion equation. But we have to handle many equations and 
need much time in this process, so we take another easy route to derive 
the kinetics equations as follows.

87Br

87Kr(excited)

87Kr
(ground) Emit a DN 

almost promptly

−β
−β

Example of DN emission

Only a part of 87Br decays 
results in DN emission.

(1)

τ ~ 80 sec



The neutron(both PN 
and DN) loss rate PN

( ) ( )tCk
l
tN

l
tN

td
tNd

eff λβ +−+−= 1)()()(

The neutron production rate

DN

 Neutron number change rate

One delayed neutron is 
emitted after the decay 
of a precursor.

The neutron(both PN and 
DN) production rate Decay rate of precursor

= The DN emission rateX PN fraction (page1.2)

After being emitted, the DNs 
are lost with practically the 
same life as the PNs.

We first use the one-DN-group approximation, and later, we move to the six-
DN-group model.
We treat the delay of DN emission explicitly, so we use the "real" life time.

Derivation of ... (2/6) 1.14

(2)

( 1 - β )



( )tCk
l
tN

td
tCd

eff λβ −=
)()(

The precursor 
production rate The loss rate

 Precursor number change rate

Derivation of ... (3/6)

The neutron(both PN and DN) 
production rate

X The DN fraction ( β )

One DN corresponds to one precursor.

Production rate of precursor are assumed to be equivalent to the 
production rate of DN(before emission into the reactor).

1.15

(3)



The PN and 
DN loss rate

The PN 
production rate

( ) ( )tCk
l
tN

l
tN

td
tNd

eff λβ +−+−= 1)()()(

The DN 
production rate

( )tCk
l
tN

td
tCd

eff λβ −=
)()(

Precursors

Neutrons

 Coupled differential equations for neutrons and precursors.

The DNs are not 
emitted promptly. 

The DNs are emitted 
after the precursor 
decay.

These are the reactor kinetics equation
(with one-DN-group approximation).

Derivation of ... (4/6) 1.16

(4)

(5)



We use the reactivity                                     and introduce "neutron generation 
time"                 .effkl≡Λ

eff
eff

eff k
k

k
11

1
−=

−
≡ρ

( ) ( )

( ) ( )

( )tCtN
kl

k

tCtN
l

k

tCk
l
tN

l
tN

td
tNd

eff

eff

eff

eff

λ
β

λ
β

λβ

+
−−

=

+
−−

=

+−+−=

)(
11

)(
11

1)()()(

( ) ( )tCtN
kl

tCtN
l

k
td
tCd

eff

eff λβλ
β

−=−= )()()(

We modify the equations in the former page.

Derivation of ... (5/6) 1.17

Production rate of PNs
－ loss rate of (PN+DN)s

(6)

(7)

Λ is a mean time between the birth of a neutron(A) and the subsequent production of another 
neutron due to the fission of neutron(A) in the fuel. At the criticality, the loss rate of neutrons equals 
to the production rate, so the Λ and l takes the same value. Near the criticality, the values of both 
parameters are practically the same.
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6,1
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tCtN
td
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iiλ
βρ

( )tCtN
td

tCd
ii

i i λ
β

−
Λ
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Sum of six group 
precursors









= ∑

= 6,1i
iββ

( )tCtN
td
tNd λβρ

+
Λ
−

= )()(

( )tCtN
td
tCd λβ

−
Λ

= )()(

Derivation of ... (6/6)
We arrive an alternative form of the kinetics equations.

( )6,1=i

With the six-DN-group model, each precursor group needs its equation. We 
then have the kinetics equations(7 coupled differential equations) of

1.18

Production rate of PNs
－ loss rate of (PN+DN)s

(8)

(9)

(10)

(11)



( )tCtN
td
tNd λβρ

+
Λ
−

= )()(

• Super criticality with both PNs 
and DNs

• Sub criticality with solely PNs
• Needs contribution of DNs to 

increase the neutron.

β

)(0 tN
Λ
−

<
βρ0)( <

Λ
− tNβρ

ρ
0

Criticality with both PNs and DNs
= delayed criticality

Criticality solely with PNs
= prompt criticality

Super criticalitySub
criticality

Characteristics of kinetics equations

Production rate of PNs － loss rate of (PN+DN)s

Super prompt criticality

Contribution of DNs for 
the neutron increase

• Super criticality with only PNs
• Contribution of DN is not 

necessary for the neutron 
increase.

• Very short reactor period

1.19

The reactivity of β is called 1$.



Summary of Chap.1 1.21

 We derived the reactor kinetics equation and found the followings.

 Under the prompt criticality, the contribution of DNs is needed to 
increase the reactor power.

 Over the prompt criticality, the PNs can increase the rector power with 
very short reactor period. 

 The prompt criticality must be avoided in usual reactor operation.

 Summary



2. Reactor response for 
a simple reactivity 

change

"step change of reactivity"
under the prompt criticality

2.1



0 Time elapsed  t

ρReactivity

Fig.1 Step change of reactivity at t=0

Criticality

Super criticality

• As a typical and simple case, we consider the time-dependent reactor 
behavior, after sudden insertion of small reactivity of far below 1 dollar to the 
steady state critical reactor.

• This reactivity insertion  is usually called "step change of reactivity".

0

Sub criticality

2.2

• For simplicity, we do not 
consider reactivity feedback 
effects due to reactor power 
and temperature change.

• Although it's a simple model 
of reactivity change, we can 
learn a typical reactor 
response with this reactivity 
change.

Step change of reactivity



2.2-2Final solution -before solving-

( )








Λ

−
−

−
−










−−
≈ tt

N
tN eff

effeffeff

eff ρβ
ρβ

ρ
ρβ

ρλ
ρβ

β
expexp

0

( )
0N
tN

2.0

1.5

1
Few 10 ms

≒100sec

•After transient 
change, stable 
change that has 
100-sec occurs.

•Transient 
changes that 
occur and 
disappear within a 
few 10 ms after 
reactivity is 
initiatied.

According to the 
form of exp(t/T)

•After several approximation, a solution consisting of two exponential 
terms, stable and transient period, is obtained.

time

Based on final solution, focusing on each of the 
transient and stable changes, we proceed calculation.



Group i Mean-life τi [s] Decay const.  λi [s-1] DN fraction  βi

1 80.65 0.0124 0.000215
2 32.79 0.0305 0.001424
3 9.01 0.111 0.001274
4 3.32 0.301 0.002568
5 0.88 1.14 0.000748
6 0.33 3.01 0.000273

Mean 13.04 Mean 0.0767 Sum  β =0.0065

Solution of kinetics equations with one-DN-group 
approximation (1/8)

2.3

As a first step, we use the one-DN-group approximation. An analytical 
solution which illustrates the reactor response can be easily obtained with this 
approximation, though it is less accurate than the six-DN-group model.

Table 2 Six-DN-group precursor data of 235U fission with thermal neutron

∑
=

≡
6

1

1

i
ii τβ

βτ
λ

τ 1
=

One-DN-group 
approximation uses 
these mean values.

∑
=

≡
6,1

11
i i

i

λ
β

βλ



( )tCtN
td
tNd λβρ

+
Λ
−

= )()(

( ) .)()( tCtN
td
tCd λβ

−
Λ

=

 Solution at the critical steady-state

(1)

(2)

2.4

The kinetics equations with one-DN-group approximation are

At the critical steady-state,
the ρ = 0, dN/dt = 0 and dC/dt = 0 ,

.000 =−
Λ

CN λβ

𝐶𝐶0 =
𝛽𝛽
𝜆𝜆 Λ

𝑁𝑁0 =
0.0065

0.077 × 0.00001
𝑁𝑁0 ≈ 10000 × 𝑁𝑁0.

For Λ=10 (μ sec)

The population of DN precursors is, typically, about 10000 times greater than 
the neutron population in a critical reactor. 
The accumulated DN precursors play a role of neutron source which controls 
the reactor kinetics under ' normal operating conditions '.

Suffix 0 denotes the value at 
the critical steady-state

(3)

(4)

Solution of ... with one-DN-group approximation (2/8)



Solution of ... with one-DN-group approximation (3/8) 2.5

To solve the Kinetics equations, an exponential form for the N(t) and C(t) are 
assumed, because their derivatives with respect to time are proportional to 
themselves :

( )tAtN N ωexp)( = ( )tAtC C ωexp)( =

t
C

t
N

t
N eAeAeA ωωω λβρω +

Λ
−

=

t
C

t
N

t
C eAeAeA ωωω λβω −

Λ
=

(6)

(7)

Introducing these expressions to the kinetics equations, we have

NC AA
Λ+

=
β

λω
1

(5)

CNN AAA λβρω +
Λ
−

=



2.6

By substituting Eq.(7) into Eq.(6) and arranging :

(10)

.0=








Λ+
+−

Λ
−

NAβ
λω

λωβρ
(8)

02 =
Λ

−





 +

Λ
−

+
ρλωλρβω

The        should not always be 0, thereforeNA

(9).0=
Λ+

+−
Λ
− β

λω
λωβρ

Two roots of Eq.(10)  are given with some approximations(see appendix 
for details) by

.
Λ
−

−≈−
ρβω,

ρβ
ρλω
−

≈+ (11)

Solution of ... with one-DN-group approximation (4/8)

"Characteristic equation" 
for the coupled differential 
equation



β
λω

ωωρ
+

+Λ=

β
λω

ωωρ
+

+=
effk
l

( ) β
λω

ωρωρ
+

+−= 1l

.
1

1
1

β
λω

ω
ωω

ωρ
++

+
+

=
ll

l

( )ρ−=11 effk

Furthermore, Eq.(9) can be modified as follows :

2.7

( )effkl=Λ

We finally arrive "Inhour equation" 
(one-DN-group in this case) :  

+ω

−ω

ρ

ω

(12)

(13)

(14)

(15) Curves are trace of the right hand side.

Horizontal line 
corresponds 
to the left 
hand side.

Fig.2 Graphical solution of  inhour equation

l1− λ−

Solution of ... with one-DN-group approximation (5/8)

0

In the early days of reactor technology, values of ω were quoted in "inverse hours" The values of ρ
such that ω=1 hr-1 is "one inhour".   Source : A. F. Henry, "Nuclear-Reactor Analysis" The MIT press



The general solution for N(t) is therefore given by

(16)( ) ( ) ( ),expexp tBtAtN −+ += ωω

2.8

with arbitrary constants A and B, which are determined from initial conditions.

Solution of ... with one-DN-group approximation (6/8)

( ) ( ) ( ).expexp tBtA
td
tNd

−−++ += ωωωω

The characteristic equation has two roots ω+ and ω- .

( ) ( ) ( ),exp'exp' tBtAtC −+ += ωω
The general solution for C(t) is given by a similar formula of

with arbitrary constants A' and B' .

The derivative of N(t) with respect to time : 

(17)

( ) .
0

−+

=

+= ωω BA
td
tNd

t
(18)



2.9

 The initial conditions

( ) ,0 BAN +=

( ) ( ) ( ) ( ).000
0

NCN
td
tNd

t Λ
=+

Λ
−

=
+=

ρλβρ

(21)

( ) 00)0()(

0

=−
Λ

=
<

CN
td
tCd

t

λβ

Before reactivity insertion, N(t) and C(t) take constant values N(0) and C(0)

( ) .0)0( CN λβ
=

Λ
(20)

Just after reactivity insertion, N(t) and C(t) stays N(0) and C(0) in 
a very short period :

( )0NBA
Λ

=+ −+
ρωω

(19)

Solution of ... with one-DN-group approximation (7/8)

N(t)

Time elapsed

N(0)

Reactivity insertion 
at t=0

0

( )
0=ttd

tNd
is also given by Eq.(18).



A and B are determined from Eqs.(18) and (21) :

( ) ( ) ( )

( )

( )0
1

00

2

NNNA
ρβ

β

βρ
ρλβρ

β
ωω

ωρ

−
≈









+

−
Λ









Λ
−

Λ
−=

−

−
Λ=

−+

−

( )2βρρλ −<<Λ
( )0NB

ρβ
ρ
−

−≈

(22)

(23)

(24)

 The final solution becomes

( ) ( ) ( ) .exp0exp0 







Λ
−

−
−

−







−−

≈ tNtNtN ρβ
ρβ

ρ
ρβ
ρλ

ρβ
β

2.10Solution of ... with one-DN-group approximation (8/8)

• By introducing the contribution of delayed neutrons to the multiplication, 
two exponential terms (two periods 1/ω+ and 1/ω- ) appeared.

• This solution has good accuracy only when the inserted reactivity is small, 
because several approximation are used to derive this.

( )t+ω ( )t−ω
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ρ
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ρβ
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 Example

(1)

2.11

Reactor response after positive reactivity insertion (1/3)

Neutron number normalized by 
it's initial value

Neutron generation time  Λ ~ l = 100 [μs] (1×10-4 [s])
DN fraction  β = 0.0065 DN precursor mean decay const.  λ = 0.077 [s-1] 

Reactivity insertion of +0.1 [%Δk/k]  (about 0.15 [dollar] )

1.18 -0.18
69 -0.018

Calculate amplitudes and periods.
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insertion [sec]

The 1st term
increases very slowly.

The 2nd term
quickly dies away.

 Response just after the reactivity insertion
• The 1st term practically does not 

change in this short time range 
because of its long period. 

• The 2nd term quickly dies away with 
the negative and short period

• The N(t) quickly increases.

• This "rapid change" is caused by 
PNs and called the prompt jump.

• But the reactor is sub criticality with 
solely the PNs, so this "rapid 
increase" saturates at a level :

(2)

2.12

Reactor response after positive reactivity insertion (2/3)

Very short time range!!
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Sum of two terms
N(t) / N(0)
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 Response after the prompt jump

• The second term has already been 
disappeared, that means the rapid 
increase of PNs has been saturated.

• Only the 1st term having long period 
remains.

• The N(t) increases slowly.

• This slow increase is dominated by 
that of DNs emitted from the decay 
of precursors.

Elapsed time after reactivity 
insertion [sec]

Contribution of the 1st 
term remains after the 
prompt jump. 

2.13

Reactor response after positive reactivity insertion (3/3)
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Long time range!!

Prompt jump
The second term 
quickly disappears 
during this. 
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• The N(t) quickly 
decreases to

due to the prompt jump.

• After the jump, the N(t)
slowly decreases.

(3)

Sum of two terms

Elapsed time after reactivity change [sec]

The 1st term slowly decreases.

The 2nd term quickly dies away.

2.14Reactor response after negative reactivity insertion
 Example

 Response
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
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Negative and 
long period 

Negative and very 
short  period

ρ = - 0.1 %Δk/k
(-0.15 $)

N(t) / N(0)



2.14-2Delayed neutron production rate constant approximation

If it is approximated that the number of precursor does not change and 
remains at C0 for a shorter time than the lifetime of the precursor, such as 
during and immediately after the prompt jump after the reactivity is applied, 

( ) 0
00 )()()( CtntCtn

td
tnd λβρλβρ

+
Λ
−

≈+
Λ
−

=

This types of linear differential equation can be solved,

( )
( ) 








Λ
−

−
−

−
= t

n
tn βρ

ρβ
ρ

ρβ
β 0

0

0

0

exp
0

=
𝜌𝜌𝟎𝟎 − 𝛽𝛽
Λ

𝑛𝑛(𝑡𝑡) +
𝛽𝛽
Λ
𝑛𝑛0

00

1

ρβ
β
−

≈
n
n

After the reactivity is applied, the transient periodic term decays to 
negligible in a short time and the prompt jump is terminated. The ratio of 
neutron densities before and after the jump is

Term of transient period

( ) 00 nC Λ= βλ
2.4 (3)



Prompt jump approximation (1/2)

( ) ( )( ) ( )
( )
( ) ( ) tdtNdtdtNd

tN
tdtNdtN

tT
ln

1
1

1
=








==

Typically, the reactor period is defined as the reciprocal of the relative 
rate of change in neutron number (or reactor power) over time

 General definition of reactor period.

)()( tN
td
tNd

Λ
−

<<
βρ( )

( ) tdtNd
tN

<<
−
Λ
βρ

(1 group 
approximation)
transient period

stable period

Comparison with transient periods as stable periods after immediate jumps.

After an immediate jump    
Percentage change in N(t)








 −
ρλ
ρβIn the one-group 

approximation.
The neutron number change after the 
immediate jump is dominated by delayed 
neutrons and the speed is slow.

2.14-3



Prompt jump approximation (2/2)

( )tCtN
td
tNd λβρ

+
Λ
−

= )()(

( )tCtN
td
tCd λβ

−
Λ

= )()(

elimination( )tC

)()( tN
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ρβ
ρλ
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( ) ( ) 







−−

= tNtN
ρβ
ρλ

ρβ
β exp0

Default value is the 
value at the end of the 
prompt jump.

The reciprocal is 
the stable period.

immediate jump 
approximation
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Value at the end of the 
immediate jump

( )
( ) ρβ

β
−

=
0N
tN

ρλ
ρβ −Increased in 

stable perio

Using an approximation that neglects dN(t) / dt, except during the 
prompt jump.

 Prompt jump approximation

2.14-4



stable period
(asymptotic period)

transient period

Long and positive Very short and negative

Long and negative Very short and negative

2.15Reactor response       Summary

( )ρβω −Λ−=−1

( ) ( ) ( ) .exp0exp0 







Λ
−

−
−

−







−−

≈ tNtNtN ρβ
ρβ

ρ
ρβ
ρλ

ρβ
β

( )t+ω ( )t−ω

βρ <<0
0<ρ

( ) ( )ρλρβω −=+1

• The prompt jump is caused by the rapid change of PNs number just 
after the reactivity insertion.

• This rapid change is "mathematically" shown by the die away of 
"transient period terms" in the solution of kinetics equations.

Solution of kinetics equations with one-DN-group approximation :

(1)



2.25Summary of Chap.2

 Summary
 We saw typical response of the reactor by solving analytically the reactor 

kinetics equation after step change of reactivity which is the most simple 
model of reactivity insertion. 

 For more complicated reactivity change, it can be shown the reactor 
power changes with the stable period after the reactivity became constant 
and the transient terms disappeared.

 Furthermore



Thank you for your kind attention 
on Nuclear Reactor kinetics
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Delayed neutron (4/4) 1.6

Nuclide Mean-life
[s]

Decay const.
[s-1]

DN fraction Notice

235U 13.04 0.0767 0.0065 Fission with thermal neutron
238U 7.71 0.130 0.0148 Fission with fast neutron

239Pu 14.76 0.0678 0.0021 Fission with thermal neutron

Table 3 DN precursor data of principal fissionable 
nuclides in one-DN-group approximation

τ λ β

 One-DN-group data

For example, low enriched uranium fuel used in PWR and BWR 
contains both 235U and 238U. The β in these reactor is calculated from β 
of these nuclides by appropriate averaging.



• The neutron lifetime l is the mean time 
from the birth of a neutron to the loss of 
this neutron in the reactor.

• For the thermal reactor, most of 
the neurons generated by the fission are 
lost by absorption or leakage after being 
slowed down(to the thermal energy) and 
diffusion as the thermal neutron.

Life time = Slowing down time
+ Diffusion time

~ Diffusion time

(Slowing down time << Diffusion time)

• Typical neutron lifetime in the LWR (PWR 
and BWR) is 10 ~ 50 [μs]

• There is practically no difference of life 
time between PN and DN.

Neutron lifetime (1/2) 1.7

Slowing 
down time

Diffusion 
time

Neutron energy

1 MeV

100 keV

10 keV

1 keV

100 eV

10 eV

1 eV

0.1 eV

0.01 eV

10 MeV Birth of PNs
(mean 2 [MeV])

Birth of DNs
(mean 0.5 [MeV])

Boundary between fast and thermal 
neutrons in two-energy-group theory

(log. scale)



• For the DN, we add the life of precursor 
to the neutron lifetime l to take account 
of the delay before it's emission due to 
precursor decay.

• We thus defined the "pseudo"-lifetime 
ld that includes the delay before DN 
emission.

Neutron lifetime (2/2) 1.8

( ) ( )τβτβτββββ ≈+=++−=+−= llllll d )1()1(

( )ττ ≈+≡ lld

• We then calculate the "mean" of "real" lifetime l of PN and 
"pseudo"-lifetime  ld of DN.

(4)

(5)

weight for average

Time elapsed

Fission

lτ

DN 
emission

Loss of 
this DN

( )τ<<l

𝑙𝑙~10−5 𝑠𝑠
𝛽𝛽 𝜏𝜏~10−2 10 = 10−1 𝑠𝑠



Example
Thermal neutron reactor fueled with 235U , operating in the critical state

Neutron lifetime  l = 100 [μs] (1×10-4 [s])
DN fraction  β = 0.0065 DN precursor mean-life  τ = 13 [s] 

Sudden reactivity insertion of +0.1 [%Δk/k]  ( keff change 1.000     1.001)

1.11Neutron multiplication ... pseudo-lifetime

Calculate Mean of PN (real) lifetime l and DN "pseudo"-lifetime ld by Eq.(5). :

Calculate the reactor period by Eq.(8). :



Example of super prompt criticality

β =0.65 %
ρ =0.75 [%Δk/k] super prompt criticality by 0.1 [%Δk/k] ）

l =100  [μs] =1×10-4 [sec]

)()( tN
td
tNd

Λ
−

≈
βρ

( )TtNtN exp)0()( = 1.0
1065.01075.0

0075.1101
22

4

≈
×−×

×
=

−
Λ

= −−

−

βρ
T [s]

Characteristics of kinetics equations (2/2)

( )∑
=

+
Λ
−

=
6,1

)()(
i

tCtN
td
tNd

iiλ
βρ

In general, the reactor should be operated under the prompt criticality.

ρ / β : reactivity in [dollar] unit        ( [dollar]/100 = [cent] )

1.20

The contribution of DNs is small and 
neglected because the PNs dominate 
the neutron multiplication in this case.

Very short period !!
(same as shown in the example in p.1.12)

Same as those in the example 
in p.1.11
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Solution of kinetics equations with six-DN-group 
model (1/3)

2.18

As a next step, we solve the kinetics equations of six-DN-group model : 

( ),)()(
6,1

∑
=

+
Λ
−

=
i

ii tCtN
td
tNd λβρ ( ).)()( tCtN

td
tCd

ii
ii λβ

−
Λ

=
( )6,1=i

To solve these differential equations, the exponential form for the numbers 
of both neutrons and precursors are assumed again.

( )tAtN N ωexp)( = ( )tAtC Cii ωexp)( = (3)

Introducing these expressions to the kinetics equations, we arrive the inhour 
equation based on six-DN-group model (see appendix for derivation). 

(1) (2)

.
1

1
1 6,1

∑
= ++

+
+

=
i

i
ill

l β
λω

ω
ωω

ωρ

Difference from 
one-DN-group 
approximation 

(5)

,
6,1

∑
= +

+Λ=
i

i
i

β
λω

ωωρ
(4)



Solution of ... with six-DN-group model (2/3) 2.19

Curves are trace of the right hand side.

Fig.4 Graphical solution of  inhour equation

Horizontal line corresponds 
to the left hand side.

One positive root  ω1
and six negative roots
ω2 ～ ω7

Seven negative roots
“The minimum” root is 
the ω1 which 
corresponds to the  
longest and (negative)
period.

 For  0 < ρ

 For  ρ < 0

0

(5')
∑
= ++

+
+

=
6,11

1
1 i

i
ill

l β
λω

ω
ωω

ωρ
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( ) ( ) ( )∑
=

=
7,1

)exp(0
j

jjj tRNtN ωω

Amplitudes 
determined by initial 
conditions

Solution of ... with six-DN-group model (3/3) 2.20

1/ω1 : stable period,
1/ω2 ～ 1/ω7 : six transient periods

Linear combination 
of seven exponential 
functions

Positive reactivity insertion case

Elapsed time

Negative reactivity insertion case

Prompt jump caused by 
rapid die away of 
transient period terms.

Prompt jump

Only the stable period 
term remains.

0 0

Decrease of  the 
stable period term

(6)
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2.21Inhour equation (1/4)

,
6,1

∑
= +

+Λ=
i

i
i

β
λω

ωωρ

From Eq.(4) of p.2.19 :

T1=ω

.
16,1

∑
= +

+
Λ

=
i i

i

TT λ
βρ

This is equivalent to Eq.(5) of p2.19 with the 
relation of ω = 1/ T . Prompt 

jump 

Change with 
stable period(1)

The stable period is the longest root of 
this equation . 

Elapsed time after reactivity 
insertion [sec]

We arrive another form of inhour 
equation with six-DN-group model :

N
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m
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In the case of one-DN-group approximation,

.
1 TT λ
βρ
+

+
Λ

= (2)
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Λ = 
100 [μs]

 Relation between inserted reactivity and stable period
Six-DN-group data of 235U in p.1.5 are used. 

Negative stable 
period does not 
become shorter 
than 1/ λ1 ~ 80.

Super 
prompt 
criticality

Inhour equation (2/4)



2.23

 Comparison between one-DN and six-DN-group

Inhour equation (3/4)
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One-DN and six-DN-group data of 235U in p.1.5 are used. 
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2.24

 Approximation to inhour equation to calculate stable period

• When |ρ|<β and the stable period T is long :

∑∑
== +

≈
+

+
Λ

=
6,16,1 11 i i

i

i i

i

TTT λ
β

λ
β

ρ

For a rough calculation, the one-DN-group approximation can be 
employed :

,
1 Tλ

βρ
+

≈ .1








=

−
≈

+ωρλ
ρβT

(3)

(4)

Inhour equation (4/4)

Solve this 6-th degree equation for the period.
The longest root is the stable period.



2.16Reactor response       Summary (2/3)
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2.17Reactor response       Summary (3/3)
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Appendix A
Roots of characteristic equation of

kinetics equation with
one-DN-group approximation

(Eq.(11) in p.2.6)

A.1.1
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The roots are given by

Derivation of roots of Eq(11) (1/2)

(8) in p2.5
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Furthermore,
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A.1.2



In the case of            , using the above approximation,βρ <

(3)
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Derivation of roots of Eq(11) (2/2) A.1.3



Appendix B

Derivation of inhour equation
with six-DN-group model

A.2.1



The kinetics equation with six-DN-group model. 
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To solve these differential equations, the exponential form for the numbers 
of neutrons and precursors are assumed again.

( )tAtN N ωexp)( = ( )tAtC Cii ωexp)( = (3)
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Introducing these expressions to the kinetics equations, we have
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A.2.2

From Eqs.(4) and (5) :
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Appendix C

General definition of reactor period
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Reactor period is generally defined as inverse of relative change 
rate of N(t), 

 After the prompt jump and transient period term completely died away ,

(21)

General definition of reactor period

( ) T
tdtNd
=

ln
1 (52)( ) ( )TttN exp∝

Compare the stable period 
calculated by Eq.(21) and transient 
period

Transient period 
with one-DN-
group approx.

Stable period (53) (54)

Use in the prompt 
jump approximation

Time changing rate of N(t) after 
the the prompt jump finished.
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Appendix D

"One point" reactor kinetics equation
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"One point" reactor kinetics equation
• During the derivation, we did not considered the 

spatial effects.

• The time-dependent behavior of the total 
neutron number is similar to that of neutron 
number density in any point in the reactor. 

• It is therefore called one point reactor kinetics 
equation.

• For instance, large negative reactivity insertion 
with local absorber such as a control rod drop 
distorts the spatial distribution and induces the 
spatial effect that can not be neglected.

• In this case, the one-point approximation is less 
accurate and space - time kinetics is needed.

• Clearly one-point approximation has its 
limitations, but serves to illustrate the basic 
behavior of time-dependent reactor as 
discussed later.

r

control rod 
drop

r

( )tn ,r

( )tn ,r
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Appendix E
Exercise

3.1



We are operating a low-power research reactor. The scram power-level of this 
reactor is set at 120 [W].
The reactor power is so low that the temperature reactivity effect can be 
neglected. The reactor kinetics are treated by one-DN group approximation.

(1) A very small step reactivity of 0.03 [%Δk/k] is now inserted. Calculate a 
period from this reactivity insertion to the scram.

The kinetics parameters of this reactor are :
Neutron generation time  Λ = 0.1 [ms]
Effective DN fraction  β = 0.0068 
DN precursor mean decay constant  λ = 0.077 [s-1]

Question

This reactor is now kept critical at 100 [W].  Answer the following questions.

(2) A small step reactivity of 0.3 [%Δk/k] is now inserted. Choose the period 
from this reactivity insertion to the scram and show the reason of your choice.

(a) less than 1 [s] (b) 1 [s] ~ 100 [s] (c) more than 100 [s]

3.2
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